由于 SMD 溶剂模型(参见下文)只能处理单一溶剂,因此对溶剂混合物进行了处理以确定“影响溶剂”。显然,溶剂性质不是组成溶剂性质之间的简单线性插值。确定用哪种单一溶剂替代溶剂混合物有些武断,但我们使用两个原则来指导我们的推理:(1) 优先溶剂化和 (2) 活性。2 优先溶剂化意味着离子将优先被与其相互作用最强的溶剂溶剂化。因此,与极性较小的溶剂相比,极性较大的溶剂在溶剂化离子反应物方面的影响应该比基于其摩尔分数预期的要大。少数溶剂的活度系数会更高,这意味着它们将发挥比原始数字所示的更高的“有效”摩尔分数。通过结合这两个原则,我们得出了二元溶剂混合物的以下经验法则:如果极性溶剂的摩尔分数至少为 0.2,则它将用作工作流程中的单一溶剂,否则将使用极性较小的溶剂。
一氧化氮 (NO) 分子的平面激光诱导荧光 (PLIF) 已广泛用于风洞设施的流动可视化、速度和温度测量。实验 PLIF 测量结果通常与使用计算得出的温度、压力、速度和物种摩尔分数的合成 PLIF 图像进行比较。这种方法通常称为计算流成像 (CFI)。在目前的研究中,我们将 PLIF 模型的信号强度与在低压气室系统内在与超音速和高超音速流场相关的压力和 NO 摩尔分数下获得的实验 PLIF 测量结果进行比较。实验测量结果与文献中报道的几种不同的激光诱导荧光模型进行了比较,包括 LIFBASE、LINUS 和 NASA 两级模型。实验测量结果与所有模型在较低压力和较低 NO 摩尔分数下都吻合良好;那里的荧光与这两个参数都呈线性关系。然而,在更高的压力和摩尔分数下,信号相对于这些参数变为非线性,因为自猝灭限制了信号,而吸收进一步限制了信号。事实上,对于实验的实验路径长度,高压和高 NO 摩尔分数的组合导致实验结果与忽略入射激光片吸收的预测结果存在很大偏差。 LINUS 模型允许计算吸收,其结果与实验测量结果更吻合。 由于超音速和高超音速流场可能包含高压流动区域,并且大型设施中的测量通常包括长路径长度,因此忽略吸收可能会对 CFI 与实验 PLIF 图像的比较产生显着的负面影响。 因此,考虑吸收的 PLIF 模型应包括在激光诱导荧光的计算流成像方法中。
泄漏发生后 540 秒,2.5% LFL、5% LFL 和 10% LFL 处的云轮廓线,针对三种情况 a) 水平泄漏指向北墙,b) 水平泄漏指向东墙,c) 垂直泄漏指向天花板。包括探测器位置(x= 4.1 m、y = 1.7 m 和 z = 2.2 m)处的摩尔分数和相应的 LFL 值。提供。
表示溶液浓度的不同方法 - 摩尔浓度、摩尔浓度、摩尔分数、百分比(按体积和质量计算)、溶液的蒸汽压和拉乌尔定律 - 理想和非理想溶液、蒸汽压 - 组成、理想和非理想溶液的图;稀溶液的依数性质 - 蒸汽压相对降低、凝固点降低、沸点和渗透压升高;利用依数性质测定分子量;摩尔质量的异常值、范特霍夫因子及其意义。
表达溶液浓度的不同方法 - 摩尔度,摩尔度,摩尔分数,百分比(按体积和质量),溶液的蒸气和Raoult定律的蒸气压 - 理想和非理想溶液,蒸气压 - 组成,理想和非理想解决方案的图;稀释溶液的综合性能 - 蒸气压的相对降低,冰点的抑郁,沸点的升高和渗透压;使用缩写特性测定分子质量;摩尔质量的异常价值,van't Hoff因子及其意义。
摘要。从CO 2柱平均干摩尔分数(XCO 2)的Spaceborn图像中估算城市CO 2发射的兴趣越来越大。排放估计方法已被广泛测试并应用于实际或合成图像。但是,仍然缺乏选择值得处理的图像的客观标准。这项研究分析了一种自动化方法的性能,用于估计城市排放作为目标城市和大气条件的函数。,它使用具有合成真理的合成数据和9920 XCO 2的合成卫星图像在全球最大的31个城市中,由全球自适应网格模型,海洋 - 陆地 - 大气模型(OLAM)产生,在这些城市高度重大的城市中放大。我们使用一种应用于这种合成图像集合的决策树学习方法根据这些发射和大气条件来定义标准,以选择合适的卫星图像。我们表明,基于高斯羽流模型的发射估计方法的自动化方法设法估算了92%的合成图像。我们的学习方法确定了两个标准,即风向的空间可变性和目标城市的排放预算,这些预算折磨了其处理的图像,其处理可得出合理的发射估计,从而从那些处理产生大量的估计。图像对应于风向低空间可变性(小于12°)和高城市排放(大于2.1 kt co 2 H-1)的图像占图像的47%,并且其处理的相对误差在发射范围内产生了相对误差,中位数为-7%,二级分支范围
摘要。在这项工作中,我们通过使用辅助设计(TCAD SILVACO)软件对CDS/CUIGASE 2(CIGS)薄太阳能电池进行了两维数值分析的研究研究。它们的结构由配置中的薄CIGS太阳能电池组成:Zno(200 nm)/CDS(50 nm)/CIGS(350 nm)/mo。然后将ZnO用于电导氧化导电细胞的透明前部。用于后接触,使用钼(MO)。CD窗口的层和CIGS吸收器的形状是N-P半导体异质结。通过应用模型中多晶CD和CIGS材料和CIGS材料和CIGS/CDS接口的晶粒关节中产生的缺陷来评估细胞的性能,并且已经对TCAD模拟中使用的物理参数进行了校准以复制实验数据。在AM1.5照明条件下模拟J -V特性。已达到转换效率(η)20.10%,并且已经模拟了其他特征参数:开路电压(V OC)为0.68 V,电路电流密度(J SC)等于36.91 mA/cm 2,并且表格(FF)为0.80。模拟结果表明,CIGS层的摩尔分数x的最佳值约为0.31,对应于1.16 eV的间隙能,该结果与实验中发现的结果非常吻合。
摘要:《联合国气候变化框架公约》要求世界各国报告其二氧化碳 (CO 2 ) 排放量。对这些报告的排放量进行独立核查是推进《巴黎协定》中商定的排放核算和减排措施的基石。在本文中,我们介绍了一种紧凑型星载成像光谱仪的概念和首次性能评估,其空间分辨率为 50 × 50 平方米,可为全球二氧化碳排放的“监测、核查和报告”(MVR)做出贡献。中型发电厂(1-10 MtCO 2 yr −1)的二氧化碳排放量占全球二氧化碳排放预算的很大一部分,目前其他星载任务尚未针对这些排放量。在本文中,我们表明,所提出的仪器概念能够解决来自此类局部源的排放羽流,这是获得相应的二氧化碳通量估算的第一步。通过辐射传输模拟,包括真实的仪器噪声模型和涵盖各种地球物理情景的全球试验集合,结果表明,在反演柱平均干空气 CO 2 摩尔分数 (XCO 2 ) 时,仪器噪声误差可以达到 1.1 ppm (1 σ)。尽管来自单个光谱窗口的信息量有限,光谱分辨率相对较粗,但大气气溶胶和卷云的散射可以在 XCO 2 反演中得到部分解释,偏差
摘要:利用活塞流反应器,实验研究了三种对称柴油沸程醚异构体的燃烧动力学。这些异构体分别是二正丁基醚 (DNBE)、二异丁基醚 (DIBE) 和二仲丁基醚 (DSBE)。流动反应器实验采用氧气作为氧化剂,氦气作为稀释剂,氧化在大气压和高压条件下进行,温度从 400 到 1000,间隔为 20 K。燃料、氧化剂和稀释剂的流速在不同温度下变化,以在化学计量条件下保持恒定的初始燃料摩尔分数 1000 ppm,停留时间为 2 秒。反应产物用气相色谱 (GC) 分析。根据结构,醚表现出不同程度的负温度系数 (NTC) 行为。然后将 GC 分析的形态结果与使用现有和新开发的化学动力学模型的模拟结果进行比较。大多数模拟产物浓度与实验数据具有合理的一致性。化学动力学模型用于阐明不同异构体的反应性和 NTC 行为的主要特征。化学动力学分析表明,三种异构体的燃烧行为受低温反应过程中形成的关键物种的影响。在常压下,DNBE、DIBE 和 DSBE 确定的关键物种分别是正丁醛、异丁醛和仲丁醇。
由于 III-N 材料体系的独特性质,AlGaN/GaN 基异质结构可用于制造高电流 (> 1 A/mm [1, 2]) 和高功率 (> 40 W/mm [1]) 的高电子迁移率晶体管和肖特基势垒二极管等器件。此类结构中二维电子气 (2DEG) 浓度的典型值为 N s = 1.0–1.3·10 13 cm -2,电子迁移率 μ ~ 2000 cm 2 V -1 s -1 。通过增加势垒层中的 Al 摩尔分数进一步增加浓度会受到应变弛豫的阻碍 [3]。此外,当 2DEG 密度增加时,2DEG 迁移率通常会大幅下降 [4],因此电导率保持不变甚至变得更低。使用具有多个 2DEG 的多通道设计的结构可能是实现更高电导率的替代方法 [5, 6]。有关 GaN 多通道功率器件的进展、优点和缺点的更多详细信息,请参阅最近的评论文章 [6]。这种设计能够在不降低迁移率的情况下增加总电子浓度。然而,强的内部极化电场会导致导带能量分布发生显著改变,因此一些无意掺杂的结构的通道可能会完全耗尽,总电导率会明显低于预期。另一方面,向势垒层引入过多的掺杂剂可能会导致寄生传导通道的形成。因此,需要优化设计。在本文中,我们研究了单通道和三通道 AlGaN/AlN/GaN 异质结构的设计对其电学性能的影响。