ligentec为高科技行业的客户(例如量子计算,高级计算,通信,自动驾驶,空间和生物传感器)提供特定应用的光子集成电路(PIC)。ligentec的技术最初是在洛桑联邦技术学院(EPFL)开发的,已获得专利,并与CMO完全兼容。该技术允许比当今最先进的技术生产具有更好性能的图片。另外,可以集成活性组件以在片上启用更多功能。通过将低脂材料(例如玻璃与硅光子学的益处)结合起来,粘合剂解决了当今综合光子学的主要挑战,包括低损失和短生产周期。
本世纪的前二十年已经看到了技术的出现,这些技术减少了对战争参与者的身体,认知和情感需求,同时增强了他们的感觉,沟通和决策能力。具有功率数据处理功能的移动电话的扩散以及连接它们的网络的扩展,可以使全球前所未有的信息瞬时传输。无人驾驶汽车(UAV)为州和非国家行为者提供一种以相对较低的成本和对运营商的风险来检测和打击特定目标的方法。人工智能(AI)可以以速度和准确性超过人类能力来分析大量数据。由AI提供支持的自主武器系统有能力在没有人类参与的情况下决定使用致命力量。
Triboelectric纳米生成器(Teng)脱颖而出,是可穿戴应用最有希望的新兴可再生能源收集技术之一。11此类设备能够利用各种形式的机械能,例如振动,压力和旋转,并将其转化为电。12 - 15托架电荷建立在表面上,在机械应力或变形下,具有不同电子亲和力的两种不同材料会导致两种电极之间的电势差,并且可以直接用于电源范围,以供电,例如LED或MINI手表。16,17此外,产生的电力可以存储在电化学电池或超级电容器中,从而使各种端口设备的运行。最近出现了18种基于纺织品的Tengs作为电子纹理应用的自源来源,由于其轻巧,柔性和可穿戴的性质而引起了相当大的关注。19 - 21但是,它们的低功率发电能力表明了足够的功能,以进一步开发为可穿戴的电子纹理创造自给自足的功率来源。22
摘要:纳米材料作为润滑油添加剂引起了极大的关注,因为它们具有可设计的组成和结构,合适的机械性能和可调的表面功能。但是,纳米材料和碱基油之间的兼容性不佳限制了其进一步的应用。在这项工作中,我们证明了油溶性聚(LAURYL甲基丙烯酸酯)(PLMA)刷刷的金属有机框架纳米颗粒(Nanomofs)是润滑油添加剂,可实现有效的摩擦减少和抗磨损性能。大型原始子,该聚合将其配位移植到UIO-67纳米颗粒的表面上。然后,通过表面启动的原子传递自由基聚合化在大型引起剂修饰的UIO-67上生长PLMA刷,从而极大地改善了UIO-67纳米颗粒的亲脂性特性,并显着增强了非极性溶剂溶液和碱基机油中胶体稳定性和长期分散性。通过将UIO-67@PLMA纳米颗粒添加到500 sn的基础油中,摩擦系数和磨损量减少了45.3%和75.5%,因为它们的出色机械性能和油的散发性。此外,UIO-67@PLMA添加剂的载荷能力从100 n大大增加到500 N,即使在65 Hz的高摩擦频率和120°C的高温下也证明了它们的出色摩擦学性能。我们的工作强调了油溶性聚合物刷官能化纳米型,以高效润滑添加剂。关键字:MOFS;聚合物刷;表面修饰;摩擦学特性;减少摩擦;反衣
加利福尼亚州圣地亚哥的加州大学圣地亚哥分校的传染病和全球公共卫生部门; B密歇根州底特律的亨利·福特健康心脏病学系; C Inova心脏和血管研究所,弗吉尼亚州瀑布教堂; D伊利诺伊州芝加哥西北大学Feinberg医学院的传染病系; e印第安纳州印第安纳州路德教会医院/印第安纳州韦恩堡的印第安纳州医学院; F呼吸道和移植医学,皇家Brompton和Harefield Hospitals,Harefield,英国;俄亥俄州辛辛那提儿童医院手术系心胸外科手术系的G级; h爱尔兰都柏林的Mater Misericordiae大学医院H心脏病学部; I澳大利亚墨尔本皇家儿童医院心脏病学系; J Monash大学和澳大利亚墨尔本Alfred Health的医师的J传染病系; K心脏病学,Clinica Guayaquil,Guayaquil,厄瓜多尔; l北卡罗来纳州达勒姆大学杜克大学心胸麻醉的l司;佐治亚州亚特兰大皮埃蒙特心脏研究所的M Samsky心力衰竭中心。
摘要:在这项研究中,使用快速蒸发的气溶胶液滴法通过毛细管组合制备了皱巴布的石墨烯氧化石墨烯(CGB)。使用扫描电子显微镜(SEM),高分辨率透射电子显微镜(HRTEM)和拉曼光谱观察到CGB。使用激光纳米粒径分析仪(DLS)获得碎颗粒的尺寸分布。通过超声分散测试水和离子液体(IL)的分散性。通过往复式摩擦测试仪和水/离子液体与氧化石墨烯配对的水或离子液体测试了水或含有碎石烯的氧化石墨烯球添加剂(W/IL-CGB)的摩擦学特性。通过三维光学显微镜观察到磨损疤痕的形态,并分析了其润滑机制。结果表明,CGB通过气溶胶液滴快速蒸发而成功制备了CGB,并且获得的CGB被弄碎的纸球。CGB具有良好的水分散体和离子液体分散体,IL-CGB对钢与钢摩擦对具有出色的抗摩擦和抗衣作用。在摩擦过程中,CGB被吸附在钢 - 钢对的界面上以形成保护层,从而避免了摩擦对的直接接触,从而减少了摩擦和磨损。
4学院科技大学校长。摘要在本文中,铝业行业应用摩擦焊接用于维修操作。修复阳极轭的过程是通过传统方式焊接进行的,被旋转摩擦焊接的方法所取代,因为摩擦焊接机的设计,制造和组装了,并执行了焊接过程。选择用于研究和实验的材料是低碳钢S37和Rod Dia。ϕ 130 mm。使用了配备有75kW电动机的电动机的旋转摩擦机的设置。旋转摩擦的焊接过程是在阳极式轭引脚上进行的,该旋转式轭钉在被融合焊接之前进行焊接之前。检查了换针旋转摩擦焊接中微结构和拉伸强度的特征。微观结构测试显示,与由于重结晶和将粗铁氧体相变成晶粒精制铁素体铅层相比,与熔融焊接焊接相比,摩擦焊接销的晶粒尺寸较小。由于退火效果,摩擦焊接引脚的拉伸强度高于融合焊接销的拉伸强度。关键字旋转摩擦焊接,铁质不锈钢,拉伸强度,锻造压力,微结构。国际环境使其能够将产品出口到国外。从这个角度来看,埃及铝制公司渴望在提取铝的各种过程中探讨现代方法,以实现国际引言政府和国际机构对更好的环境以及减少各种行业的环境有害排放的永久愿望已成为公司管理的主要关注点,尤其是那些将其产品出口到国外的人,因为有法律可以在制造这些产品期间跟踪生产公司并评估它们以符合标准。
摘要。本研究探讨了通过摩擦搅拌工艺 (FSP) 利用 ZrB2 增强材料来增强铝基复合材料的制造。实现 ZrB2 颗粒的均匀分布对于优化材料性能至关重要。使用 FSP 添加 ZrB2 纳米颗粒可显着改善铝的各种机械性能。拉伸强度提高了 20.25%,硬度提高了 35.67%,疲劳强度提高了 23.67%,耐磨性提高了 29.45%。这些增强强调了纳米颗粒增强材料在增强铝基体抵抗机械应力和磨损机制方面的有效性。结果证明了基于 FSP 的技术在定制铝基复合材料的机械性能以适应各种应用方面的潜力。这项研究为开发具有增强机械特性的高性能材料的先进制造方法提供了宝贵的见解,促进了铝复合材料技术的进步,以满足需要卓越强度、耐用性和耐磨性的行业的需求。
这项研究研究了在液氮衰老之前和之后,聚苯乙烯(PEEK)和PEEK COM的机械和摩擦学特性5个月。在25°C和-100°C下进行的摩擦学测试在空气和高真空(10-5 PA)环境中揭示了基质修饰,填充剂,环境,温度和低温衰老对其性能的影响。聚合物的低温衰老导致低温含量和骨折韧性的降低约10%,磨损速率提高至少20%。在碳纤维,石墨和PTFE增强PEEK的低温真空环境中实现了非常低的摩擦系数(0.02)。结果表明衰老,温度和环境对PEEK及其复合材料的显着影响。
可以获得接近真实的数据。对其摩擦学特性的研究以及主要因素的正确选择将有助于在使用实验室和生产工厂进行模拟时提供准确的输入数据。增加接触元件和系统的使用寿命的方法之一是使用聚合物,金属聚合物材料和涂料。这样的材料结合了具有良好抗摩擦,抗腐蚀,抗衣和其他现代聚合物特性的金属固有的高机械强度[1-10]。三维印刷或3D打印作为现代技术的快速开发和改进为建造高科技材料和三维固体细节提供了机会。该技术本质上是不同的,与传统技术相比具有许多优势。最传统的建模,创建和制造方法,例如铸造,锻造,转弯,铣削等。对于大多数用户而言,付出了昂贵,劳动力且耗时[11-16]。在工作[17,18]中,作者对3D打印技术中使用的主要材料进行了研究和分析。根据制造商,分销商和市场研究,主要材料是PLA(聚乳酸),PETG(聚乙烯三甲酸酯)和ABS(丙烯腈丁二烯苯乙烯)。其他一些材料是ASA,TPE,TPU,TPC,PA,PC,PP,PEI,PVA,PVA,PVC,PEEK,PEEK,HIPS等。关于3D聚合物和复合材料的大多数研究都集中在其机械性能上,该特性约占所有研究的12%。这些研究中只有3%与它们的摩擦学特性有关[19]。在3D聚合物材料和复合材料领域的专业文献研究中对研究的研究表明,它们与寻找摩擦系数的依赖性以及对各种因素的磨损强度有关,例如正常负载,滑动速度,粗糙度,粗糙度,聚合物的微生物,表面层的显微镜,表面层,厚度和厚度为20-25层[25-25]。结果有时是矛盾的,它们的比较与困难,有时甚至是不可能的,这是由tribotesters的不同方法和运动方案引起的。摩擦和磨损的摩擦学过程
