➢ 材料特性 ➢ 电子显微镜 ➢ 材料的热机械加工 ➢ 先进物理冶金学 ➢ 先进材料 ➢ 薄膜技术 ➢ 先进材料合成与表征 ➢ 复合材料 ➢ 科学写作与研究伦理 ➢ 绿色能源材料 ➢ 粉末冶金制造 ➢ 材料科学中的计算方法简介 ➢ 生物材料-医学材料 ➢ 聚合物科学与工程 ➢ 材料热力学与动力学 ➢ 电化学在材料科学与工程中的应用 ➢ 软材料 ➢ 相变 ➢ 分级纳米结构材料 ➢ 自然启发材料工程 ➢ 2D 材料:合成、表征与应用 ➢ 磨损与摩擦学
获得纳米结构化的氮化物和碳耐碳涂层的最常见方法之一是反应性木ementron溅射(RMS)。RMS方法使使用特定的光学和机械性能形成高质量的涂层。通过离子血浆方法形成涂料的一个重要问题是它们的组成,结构以及其物理和机械性能的预测。12在许多已发表的研究12 - 15中,已经表明,所有沉积参数都在涂层结构和机械特征中认真对待。航天器的可靠操作需要使用具有抗裂缝特性的耐磨涂层。特别是,陀螺仪系统的摩擦学元素(例如推力轴承)需要用硬抗裂缝覆盖
环形石墨烯(TG)代表了一类新的碳纳米结构,将曲率驱动的场限制与量子增强电荷相干性集成在一起。与常规的基于碳的增强剂不同,TG表现出源自无折叠的实验和理论证据链的3×10 9的电磁场扩增因子(AF)。曲率诱导的定位和等离子体杂交理论(PHT)的协同作用使van der waals(VDW)在青铜基质中的膨胀从0.4 nm到577 nm,从而使超高的TG浓度仅为0.005 wt%,以驱动机械性能的转化增强。将其纳入无铅铜制时,TG将耐磨性提高458%,并使CO₂排放量减少78.2%,从而提供了史无前例的性能和可持续性组合。这些作用源于量子等离子体加固机制,这些机制改善了纳米级的应力转移,负载分布和分子内聚力。与常规合金元素(例如PB或Ni)不同,依赖于散装物质特性的PB或Ni,TG从根本上改变了通过纳米级力重新分布来改变耐药性。这项研究将TG确立为下一代金属纳米复合材料的破坏性材料,将基本纳米科学与与行业相关的摩擦学验证合并。与全球第八大卡车制造商Scania合作进行,该验证证实了其直接的工业相关性,证明了现实世界中的适用性在高性能耐磨应用中。连接电磁场放大,VDW扩展和摩擦学验证的明确证据链支持TG的量子工程增强功能,将其定位为高级制造和重型产业的基石。
摘要:近年来,增材制造技术越来越广泛,其中发展最为深入的是金属基体上的直接金属沉积 (DMD)、合金和陶瓷材料。这项研究展示了在 1045 结构钢上沉积异质金属合金(镍基合金和 Fe-Al 青铜)有效形成涂层的可能性。研究考虑了复合涂层的显微硬度、微观结构和摩擦学性能的变化,这些变化取决于 DMD 处理过程中的激光点速度和间距。结果表明,如果正确选择复合涂层的成分,则可能存在 DMD 条件,以确保它们之间以及与基体之间的可靠和持久连接。
制造和成型技术,包括高级处理方法;生产工程;工业工程;精密工程;铸造和铸造技术;焊接和加入;计量学;加工;热科学和工程包括热力学,燃烧,传热,空调和气候控制;固体的设计和分析;热和流体机械系统;机器,结构和设备在内,包括运动学,机械和机器人技术,微型机械系统(MEMS);摩擦学;汽车工程;海军建筑与海洋工程;振动工程,声学和噪声素的动机;固体和流体的实验和计算应力分析; CAD/CAM,CIM;非破坏性评估
RFMEMS、成像和监视、RF数字协同设计、有源和可重构天线和阵列、大功率固态系统、非线性建模和测量、高达 THz 的组件和系统;微电子学:MEMS 和微系统、国防和空间应用的微传感器开发、毫米波和 THZ 电子设备、量子信息技术的量子电子设备;信号处理:声学信号处理、水下和空气声学、语音和音频处理、通信信号处理、传感器阵列信号处理、多传感器数据融合、信号处理的机器学习、物联网信号处理;多学科:现代雷达系统。18. 大气科学 (CAS):大气和海洋科学的所有领域。19. 汽车研究与摩擦学 (CART):电动汽车电力电子
陶瓷部门继续支持其独特测量能力的升级和扩展。NIST 高级测量实验室 (AML) 的高分辨率 x 射线计量和纳米摩擦学设施中的仪器今年全面投入使用,并已取得前所未有的分辨率结果。随着 NSLS 两条光束线最近现代化,专用于扩展 x 射线吸收精细结构 (EXAFS) 和 x 射线光电子能谱 (XPS),陶瓷部门及其合作伙伴已经建立了对元素周期表所有元素进行 x 射线吸收光谱分析的能力。为期三年的 SBIR 项目已导致在 NSLS 软 x 射线光束线上开发出最先进的多元素探测器,使数据收集率提高了一个数量级。