摘要钛合金由于具有出色的机械和摩擦学特性而在许多科学,工程和技术领域都使用。调查目标是通过应用添加剂过程(例如选择性激光熔化和加强生物硅化钛合金加强钛合金)来开发一种创新的综合材料,以供汽车行业使用。生物 - 硅(BS)纳米颗粒是使用钙叶酸的农业废物作为增强剂提取的。工业级钛(IGT)合金纳米复合材料用于制造具有生物 - 硅纳米颗粒的合金增强0、5、10和15%的合金。研究了IGT/BS纳米复合材料的机械性能,例如微硬度,拉伸(最终和产量)强度和抗压强度。根据调查的结果,15wt。%IGT/BS纳米复合材料具有更好的机械特征。L9 Taguchi的正交阵列用于说明磨损试验。ANOVA用于优化结果。ANOVA用于确定理想的过程参数,从而导致最低的磨损速率和摩擦系数(COF)。调查结果表明,施加的载荷为30 N,滑动速度为4 m/s,滑动距离为2000 m可能会达到最低的磨损。根据ANOVA,负载是影响磨损的最重要因素(30%)。
摘要 本研究主要研究了通过添加石墨和二硼化铪 (HfB 2 ) 颗粒来显著提高 AA6061 合金混合复合材料的磨损性能。AA6061 合金因其高腐蚀性和耐磨性而广泛应用于航空和汽车领域。采用搅拌铸造法,通过在 AA6061 基体中添加不同百分比的石墨和 HfB 2 颗粒来创建混合复合材料。使用 SEM 和显微硬度计检查所得复合材料的微观结构,以验证增强颗粒的均匀分布和合金的硬度。为了比较混合复合材料与基体 AA6061 合金的摩擦学性能,在不同的负载条件下进行了磨损实验。结果表明,加入 5% 的石墨颗粒和 15% 的 HfB 2 颗粒后,耐磨性显着提高。坚硬的 HfB 2 颗粒提高了承载能力和耐磨性。石墨和 HfB 2 的协同作用产生了一种混合复合材料,与基础 AA6061 合金相比,其磨损率和摩擦系数明显较低。这项研究的成果凸显了混合增强策略在开发具有增强摩擦学性能的先进材料方面的潜力,使其有望成为汽车悬架部件和车顶导轨的替代品。
本研究通过在正常大气条件下使用销盘磨损试验机进行磨损试验,分析了 Mg-TiO 2 纳米复合材料的干滑动磨损行为。试验期间考虑的工艺参数是 TiO 2 纳米颗粒的重量分数、法向载荷和滑动速度。试验期间,滑动距离和磨损轨道直径分别保持恒定在 1500 m 和 90 mm。性能指标是累积磨损和摩擦系数。本研究采用基于田口的灰色关联分析来优化纳米复合材料的磨损行为。本研究中考虑的实验设计是 L9 正交阵列,每个工艺参数分为三个级别。计算每个实验的灰色关联度 (GRG),发现工艺参数组合 A3B2C1 获得的最大 GRG 为 0.825,分别对应于 5wt% TiO 2、1 kg 法向载荷和 1.5 m/s 滑动速度。将初始估算的 GRG 与最佳工艺参数的预测值和实验值进行比较,发现 GRG 分别提高了 2.2% 和 0.77%。进行方差分析 (ANOVA) 以估计对纳米复合材料的磨损行为有显著影响的工艺参数,随后得出结论,除其他因素外,工艺参数法向载荷是最重要的因素。
通过导体驱动的电子电流可以通过著名的库仑阻力效应诱导另一个导体中的电流。在移动的流体和导体之间的接口上已经报道了类似的现象,但是它们的解释仍然难以捉摸。在这里,我们利用了非平衡的Keldysh框架,开发了一种相互交织的流体和电子流的量子机械理论。我们预测,全球中性液体可以在其流动的实心壁中产生电子电流。这种流体动力学库仑阻力均来自液体电荷波动与固体电荷载体之间的库仑相互作用,以及由实心声子介导的液体电子相互作用。我们根据固体的电子和语音特性以及液体的介电响应明确地得出了库仑阻力电流,这一结果与液态涂纸界面上的最新实验一致。此外,我们表明当前一代抵消了从液体到固体的动量转移,从而通过量子反馈机制降低了流体动力摩擦系数。我们的结果为控制量子水平控制纳米级液体流量提供了路线图,并提出了设计具有低流体动力摩擦的材料的策略。
摘要 为了设计在极端条件下(包括长期太空任务)可靠运行的运动机械部件,需要对候选材料、表面处理和干膜润滑剂进行多元摩擦学评估。在本研究中,使用球对平试验收集了线性往复或单向滑动摩擦数据。球是硬化的 440C 不锈钢(未涂层或溅射 MoS 2),平面是 440C 不锈钢、Nitronic 60 不锈钢或 Ti6Al4V 钛合金,并经过各种表面处理和/或干膜润滑剂。表面处理包括阳极氧化、氮化和电火花加工。干膜润滑剂包括 Microseal 200-1、溅射 MoS 2 和纳米复合涂层 i-Kote。数据包含测试期间施加的法向载荷、测得的摩擦力、计算的摩擦系数、球位置、环境温度和相对湿度。测试在 300 至 2000 MPa 的不同峰值赫兹接触压力条件下进行。表面处理和干膜涂层后在 150 °C 下真空烘烤的平面以及在惰性气体(氮气)环境中测试的样品的数据也可用。这些数据既可用于从根本上了解不同材料系统的摩擦学特性,也可用于设计适合特定应用、条件和工作周期的组件。
• 大多数扭矩紧固接头不使用垫圈,因为使用垫圈会导致紧固过程中螺母和垫圈之间或垫圈和接头表面之间产生相对运动。这会改变摩擦半径,从而影响扭矩-张力关系。如果需要更大的轴承面,则可以使用法兰螺母或螺栓。如果要使用垫圈,与螺栓杆紧密贴合的硬垫圈可提供更低、更一致的摩擦,通常是首选。• 去除紧固件上通常存在的油膜会降低给定扭矩的张力,并可能导致紧固件在达到所需张力之前发生剪切。• 由石墨、二硫化钼和蜡配制的超级润滑剂可产生最小的摩擦。除非在指定的紧固扭矩中留有余地,否则诱导张力可能会过大,导致螺栓屈服和失效。但是,如果以可控的方式使用,这些润滑剂可以有效地降低扭矩,以产生所需的张力,这意味着可以使用较低容量的紧固工具。• 出于外观或耐腐蚀的原因,紧固件可能会镀层。这些处理会影响摩擦系数,从而影响扭矩与张力的关系。• 通常会故意在紧固件中引入摩擦,以减少因振动而松动的可能性。在确定正确的紧固扭矩时,必须考虑诸如锁紧螺母之类的装置。
描述和应用 AI-1706 是钴基表面合金中最普遍使用的等级,在很宽的温度范围内,对因机械和化学降解而产生的单一或综合磨损具有出色的抵抗力。AI-1706 是一种坚韧、耐冲击和耐腐蚀的合金,在高温压力下不易热裂,并具有出色的抗咬合性能。它在红热下可抵抗碎裂、剥落和氧化,同时保持合理的延展性和良好的高温硬度。该合金的摩擦系数较低,即使长时间暴露在 1000°C 以上的温度下也能恢复到室温硬度。AI-1706 几乎不受大多数常见腐蚀性化学品以及大气腐蚀的影响。在空气中加热时,合金在 400°C 时开始失去光泽,但直到加热到 750°C 以上时才会发生明显的氧化。由于在初始加热循环后形成了紧密粘附的氧化皮,因此随后的氧化,高达 1000°C 时可以忽略不计。在 1000°C 以上的温度下,氧化更明显,但不会受到水分的明显影响。在 1000°C 以下,脱碳可以忽略不计。但是,熔融盐和碱金属碳酸盐和氢氧化物具有一定的腐蚀性,尤其是如果允许它们聚集并留在表面上。AI-1706 被认为易于用选定的碳化钨工具进行加工。
纤维的快照已被用作跨人类文化的数千年的一种交流和音乐形式。但是,尚未对这种快速运动的动力学进行系统分析。使用高速成像和力传感器,我们分析了纤维快照的动力学。我们的分析揭示了皮肤摩擦在介导SNAP动力学中的核心作用,通过充当控制所得高速度的闩锁。我们通过用不同的材料覆盖拇指和中纤维,以产生不同的摩擦系数和不同的可压缩性来评估这种摩擦闩锁的作用。在这样做时,我们揭示了纤维垫的可压缩摩擦闩锁可能在最佳调整的摩擦和压缩方案中运行。我们还开发了一种柔软的,可压缩的摩擦的闩锁介导的春季驱动(LAMSA)模型,以进一步阐明摩擦的关键作用及其与可压缩闩锁的相互作用。我们的数学模型表明,摩擦在纤维扣中起着双重作用,既有助于载荷,也可以在阻碍能量释放的同时进行储能。我们的工作揭示了如何将表面之间的摩擦作为可调的闩锁系统利用,并为许多机器人技术和超快速的能量释放结构的摩擦复杂性提供了设计见解。
离散元法 (DEM) 是一种数值技术,用于模拟颗粒系统的行为并研究这些系统的颗粒尺度力学 1 。该方法使用显式时间积分来更新一系列时间步长中每个粒子在每个时间的位置和旋转,需要计算每个接触和每个时间步长的颗粒间接触力。接触运动和接触力之间明确、精确和稳健的关系对于 DEM 代码至关重要,迄今为止最常见的运动-力关系是线性摩擦接触。使用此模型,可以分别计算垂直于接触表面和切向的力分量。在时间 푡 + Δ 푡 时,两个粒子之间的法向(压缩)接触力 푓 n ,푡 +Δ 푡 仅仅是粒子理想轮廓的累积重叠 휁 푡 +Δ 푡 乘以法向接触刚度 푘 n 。在时间步长 Δ 푡 内发生的切向力变化 Δ 퐟 t 等于两个粒子在时间步长内的相对切向运动矢量 Δ 흃 乘以切向刚度 푘 t ,但累积切向力的大小 | 퐟 t ,푡 +Δ 푡 | 仅限于摩擦系数 휇 乘以法向力。这两个规则通常写为
机械性能 公制 英制 注释 硬度,洛氏 M 85 85 ASTM D785 硬度,洛氏 R 115 115 ASTM D785 硬度,肖氏 D 80 80 ASTM D2240 拉伸强度 82.7 MPa 12000 psi ASTM D638 65°C (150°F) 时的拉伸强度 41.4 MPa 6000 psi ASTM D638 断裂伸长率 50 % 50 % ASTM D638 拉伸模量 2.93 GPa 425 ksi ASTM D638 弯曲强度 103 MPa 15000 psi ASTM D790 弯曲模量 3.10 GPa 450 ksi ASTM D790 压缩强度 86.2 MPa 12500 psi 10% 变形; ASTM D695 压缩模量 2.90 GPa 420 ksi ASTM D695 剪切强度 68.9 MPa 10000 psi ASTM D732 缺口悬臂梁冲击强度 0.320 J/cm 0.600 ft-lb/in ASTM D256 A 型 动态摩擦系数 0.25 0.25 干态与钢;QTM55007 K(磨损)系数 161 x 10 -8 mm ³ /NM 80.0 x 10 -10 in ³ -min/ft-lb-hr QTM 55010 极限压力速度 0.0946 MPa-m/sec 2700 psi-ft/min 4:1 安全系数;QTM 55007