如今,增材制造 (AM) 技术被视为先进工艺,通过该技术可以逐层生产形状复杂的部件。值得注意的是,据报道,在这些技术中,在生产角度大于 45° 的部件时,不需要支撑。而当角度低于此角度时,需要有支撑来抵消重涂刀片的力并散热。事实上,在这些角度下,存在脱落导致部件故障的风险,并会增加下皮表面的严重熔渣形成(高粗糙度)。然而,通过优化一些参数,可以减小这个角度的值。因此,本论文的主题是找到 IN718 合金的优化下皮参数,以提高倾斜试件悬垂表面的质量。这项工作从对下皮参数的深入文献研究开始。我们发现,最关键的参数是悬垂角度、激光功率、激光速度、描边距离以及使用下皮参数处理的层数。基于所获得的知识,在 Prima Industrie SpA 使用 Print Sharp 250 机器对参数进行了优化。实验程序包括三个“实验设计”(DoE),第一个实验进行了重复性测试。第一个 DoE 是通过对倾斜 30°、35° 和 40° 的样品进行 3 3 因子实验进行的,修改了激光功率、激光速度和描边距离。下皮表面的粗糙度分析被用作关键性能指标。结果,找到了下皮粗糙度低于 21 µm 的最佳八组参数(角度为 35° 和 40°)(文献中 Inconel 718 在 45° 时的值为 19 µm)。为了验证结果的准确性,我们通过使用相同的参数打印和分析一些样本进行了重复性测试。检测到的变异性始终低于 5%,证实了结果的一致性。第二个 DoE 旨在使用图像分析来评估孔隙率,其中样本被切割、抛光,然后使用光学显微镜进行分析。对于最佳参数组,样本的密度始终高于 99.2%。因此,预计下皮区域的机械特性不会发生变化。最后,进行了第三个 DoE 以
抽象淀粉酶是一些微生物产生的水解酶,并用于淀粉的水解。这项研究旨在确定从废物中分离出的某些真菌分离株,利用合成可溶性淀粉和糖甘蔗渣作为底物合成淀粉酶合成酶的能力。尼日尔曲霉,曲霉曲霉和先前被确定为具有淀粉活性活性的镰刀菌。使用浸没的发酵过程用于产生淀粉酶,基底培养基和甘蔗甘蔗作为底物。孵育时间,底物和接种浓度,pH和温度均已优化。使用二硝基白杨酸试剂(DNS)技术来确定产生的淀粉酶的活性。使用溶剂淀粉(20 g(w/v))在室温和pH 7.0处作为底物的初始产生,当它们的浓度高(3%)较高时,所有分离株都会更好地产生淀粉酶,但孵化时间不同,但在弯曲曲霉(8.65±0.21 U/ml/ml/ml/mliim)和fus/umiium s s suspergillus nigr nigr and s hr不同的淀粉酶(3%)和fus n.1.15(7.15)黄曲霉的曲霉(7.30±0.14 U/ml/分钟)需要144小时的延长孵育时间才能产生该产品。研究表明,进一步研究了分离株的身份和提取的酶的工业应用。关键字:淀粉酶,优化,参数,甘蔗甘蔗渣,合成淀粉。Further production using sugar cane bagasse and optimization of production parameters of the isolates reveals that Aspergillus niger (4.35±0.07 U/mL/minutes) has an optimum incubation period of 120 hours, an inoculum concentration and substrate concentration of 2% each, and a pH of 6, Aspergillus flavus ( 6.40±0.28 U/mL/minutes ) has an optimum incubation 144小时的周期为中性pH时的接种物和底物浓度分别为3%,镰刀菌(6.80±0.28 u/ml/mine)的最佳孵育周期为168hr。,接种量为3%,3%的浓度为3%,底物浓度为2%,所有均值均可在30个隔离率中均可在30 o中均能均可置于30 O型均值。对于淀粉酶合成中使用的昂贵合成淀粉底物,渣酱可能是更具成本效益的选择。
下Asteraceae Solanenio Solanacio Mannii(Hook.f。)3 2.38 3下Betulaceae alnus alnus acuminata kunth 3 2.38 2下celastraceae Catha forssk Catha Edulis(Vahl)forssk。ex 3 2.38 2较低的Ericaceae Erica L. Erica Arborea L. 5 3.96 4下埃里卡科·阿古里亚·阿古里亚·阿古里亚·萨利西弗利亚(Comm。ex 2 1.58 1 Lower Euphorbiaceae neoboutonia Neoboutonia Macrocalyx pax 15 11.9 6 Lower Euphorbiaceae Macaranga Kilimandscharica pax 2 1.58 1 Lower Gentiaceae anthoclentist anthoclentist grandiflora Gilg 1 0.79 1 Lower Meliaceae Carapa Carapa Grandiflora Sprague 1 0.79 1较低的Hypercaceae HyperCum HyperCum Revolutum Vahl。4 3.17 3下Meliaceae Lepidatrichilia lepidatricilia volkensii(gürke)10 7.93 4下莫拉西·弗里斯·弗里斯(Moraceae Ficus Tourn)。ex ficus thonningii blume 2 1.58 1降低myrtaceae syzygium gaertn。syzygium guineense(Willd。)DC。3 2.38 2降低番红花桉树桉树Maidenii F.Muell。2 1.58 1下pentaphylacacea balthasaria schliebenii(梅尔奇)3 2.38 2较低的poaceae yushania yushania alpine 1 0.79 1下podocarparteae podocarpus podocarpus latifolius壁。3 2.38 2较低的蛋白质绒毛。Faurea Saligna Harv。24 19.04 11下低渣hagenia hagenia hagenia abyssinica(Bruce)J。F. 30 23.81 12下开胃斑唇裂。f。)1 0.79 1较低的dombeae dombea cav。 Dombea Torrida(J.F.Gmel。) 8 6.34 6中Ericaceae Erica L.Erica Arborea L.155 77.5 20中Ericaceaceae Agauria Agauria salicifolia(Comm。 EX 12 6 7中部超酸HyperCum HyperCum Revolutum Vahl。f。)1 0.79 1较低的dombeae dombea cav。Dombea Torrida(J.F.Gmel。) 8 6.34 6中Ericaceae Erica L.Erica Arborea L.155 77.5 20中Ericaceaceae Agauria Agauria salicifolia(Comm。 EX 12 6 7中部超酸HyperCum HyperCum Revolutum Vahl。Dombea Torrida(J.F.Gmel。)8 6.34 6中Ericaceae Erica L.Erica Arborea L.155 77.5 20中Ericaceaceae Agauria Agauria salicifolia(Comm。EX 12 6 7中部超酸HyperCum HyperCum Revolutum Vahl。17 8.5 9中proteaceae furaa harvFaurea Saligna Harv。14 7 7中间红斑科Hagenia hagenia hagenia hagenia abyssinca(Bruce)J。F. 2 1 2 ag =高度圆周,nos =物种的个体数量,%=物种百分比,np =数量=
高强度铝合金,包括 2xxx、6xxx 和 7xxx 合金,在高温下强度较低,这是因为热暴露后沉淀物会粗化[7 和 9]。最近的研究报告称,由于 α-Al(MnFe)Si 弥散体的析出,3xxx 合金在室温和高温下均具有优异的力学性能[10 和 13]。α-Al(MnFe)Si 弥散体与基体部分共格,具有立方晶体结构[10,14]。有趣的是,α-Al(MnFe)Si 弥散体在 300℃ 时具有热稳定性,这提高了高温强度和抗蠕变性[12,13]。曾尝试通过添加合金元素和/或各种热处理来优化α-Al(MnFe)Si弥散体的特性,以期改善3xxx合金的高温力学性能[11、13、15和19]。刘和陈[12]报道,在375℃下加热48小时的一步法热处理促使大量α-Al(MnFe)Si弥散体析出,从而在300℃下实现3004合金的峰值弥散强化。后来,发现与在375℃下加热48小时的一步法热处理相比,在250℃下加热24小时和在375℃下加热48小时的两步法热处理可显著改善弥散体的特性以及300℃下的屈服强度和抗蠕变性[17]。李等人。 [13]研究了添加不同量的Si和Mg对3xxx合金组织和高温性能的影响,发现当Si含量为0.25wt.%、Mg含量为1.0wt.%时,α-Al(MnFe)Si弥散相的高温强化效果最好。刘等[16]研究发现,在Al-Mn-Mg 3004合金中添加0.3wt.%Mo可细化弥散相,并提高其在350℃以下的热稳定性。由于Fe、Si和Mn等合金元素在凝固过程中发生偏析,在沉淀热处理过程中,枝晶间区域总会形成无弥散相区(DFZ),从而降低弥散相的体积分数,降低合金的高温性能[11e13]。因此,在采用弥散强化时,必须尽量减少 DFZ。添加具有负偏析(ko > 1)的元素是减少 DFZ 数量的有效方法。据报道,Mo 可以最大限度地减少不同 Al 合金中 DFZ 的形成 [16,20,21],从而使弥散体的体积分数较大且分布均匀,最终获得更优的高温性能。尽管之前的研究报告显示弥散体强化可以使 Ale Mne Mg 3xxx 合金的高温性能得到显著改善,但大多数研究都局限于铸锭。事实上,工业工程零件通常需要材料经历大的塑性变形才能满足特殊的形状和性能要求。此外,热轧或挤压也能消除铸造缺陷,如夹渣、孔隙等,进一步改善材料性能[22e25]。张等[26]研究发现,室温预轧显著促进了纳米弥散相的形核,增加了Al-Mn-Si合金中弥散相的数量密度。但室温变形会增加开裂的风险,从而增加制造难度[27]。因此,有必要研究热变形工艺对弥散相组织及其相关力学性能的影响。
生物量在使可再生能源主流化的领先地位,甚至比太阳能印度尼西亚(Perusahaan listrik negara,2021年)更重要的是Perusahaanlistrik negara(PLN)目标18,895 MW在52个位置的114个燃烧电源工厂中的共同射击能力1895兆瓦的能力。目前,生物质联合试点项目已在32个地点使用5%的生物质燃料(棕榈仁壳,木材颗粒)实施。预计该计划的未来扩展将包括由独立发电商拥有和经营的燃煤电厂。设计在2025年后将开始运营的新燃煤发电厂的设计至少为30%的生物质燃料。越南(Barnes,2023; Bich,2023年)越南政府于2023年5月15日发布的电力开发计划8要求煤炭发电厂在运营20%后燃烧生物质和氨燃料,起价20%,起到20%,并增加到100%,随着该国逐步淘汰煤炭,以2050年逐步淘汰煤炭。到2030年,计划达到2,270兆瓦的生物质和废物到能量植物的合并能力,目的是到2050年增加到6,015兆瓦。生物质来源:渣酱,稻草,稻壳,咖啡壳,椰子壳和马来西亚锯末国家能源过渡路线图(经济部,2023年)具有六个能源过渡杠杆,其中包括生物能源。它将涉及2024年在退出的2,100 MW Tanjung Bin发电厂在退出的生物质聚类和驾驶生物质,以至于2027年至少缩放生物量的共同产能。生物质来源:棕榈为空的水果束颗粒,木屑,木材颗粒,竹子颗粒,椰子壳和稻壳。菲律宾据报道,2019年356兆瓦的生物量功率能力在4,400兆瓦时的潜在容量(DIA,2023)Tabasse用作锅炉燃料的锅炉燃料;大米和椰子壳干燥机,用于作物干燥;用于机械和电气应用的生物量气体。烤箱和农业废物的烤箱窑炉;炉子和烹饪炉,用于烹饪和加热目的。这些生物质技术装置的容量高于其他可再生能源或节能和温室气体减肥技术的能力(Shead,2017)。生物量来源:稻壳,稻草,椰子壳,椰子壳,香蕉,菠萝和新加坡一般的新加坡没有农业和林业领域,而是通过园艺生物量和浪费性来追求生物质发电。树枝,叶子和草皮在海湾和宫岛的花园中燃烧用于能源生产。宫岛共同燃烧煤的Tembusu多实施综合体(TMUC)(即低灰分和低硫)和生物量以低排放产生蒸汽和电。总输出为134兆瓦。(Tan,2023; Gan,2022)
摘要描述:石油和天然气应用,特别是钻井应用的要求不断增加。新的钻井技术需要能够满足机械、磁性和腐蚀性能方面的挑战性要求的材料。新的油气田在海底更深的深度进行勘探,为了进行这些勘探,应该开发新材料。这些新材料必须表现出高强度,屈服强度高于 1035 MPa (150 ksi),并且在钻井液高温和盐度结合的恶劣环境中具有出色的腐蚀性能。德国 Edelstahlwerke 开发了一种满足钻井应用苛刻要求的新材料解决方案。新开发的无磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢采用感应炉中的传统炼钢工艺、随后的电渣重熔和热加工生产。这种新型 FeCrMnMo-HIS 具有强度高、韧性好、耐腐蚀性能强等特点。固溶退火后,该材料完全为奥氏体,伸长率高于 60%,屈服强度和极限强度分别为 600 MPa (87 ksi) 和 980 MPa (142 ksi),冲击能量高,高于 350 J (> 258 ft-lbs)。FeCrMnMo-HIS 钢未经敏化处理,未发生晶间腐蚀,在室温下氯化铁溶液中测试 72 小时后未失重,且具有较高的点蚀潜力。临界点蚀温度为 35 °C (95 °F)。此外,HI-Steel 在 108 °C (226 °F) 的饱和 NaCl 中具有抗应力腐蚀开裂性。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。1.创新是什么?开发了一种新型非磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。2.这项创新是如何实现的?%)。该钢采用传统炼钢工艺生产。这项工作于 2017 年开始,目前仍在进行中。开发了一种新型非磁性高间隙(FeCrMnMo(C+N))奥氏体不锈钢,其名义成分为 Fe-18Cr-18Mn-2Mo-1(C+N)(wt.它在固溶退火条件下具有良好的伸长率、强度和冲击能量组合。抗点蚀当量数 (PREN) 高于 35。高间隙(HI)钢在不同环境下表现出良好的抗应力腐蚀开裂和点蚀性能。新型高间隙 FeCrMnMo 奥氏体不锈钢是一种非常有前途的牌号,适用于石油和天然气工业,因为其机械强度高于 1000 MPa(145 Ksi)且具有良好的腐蚀性能。3.描述腐蚀问题或技术差距激发了创新的发展。创新如何改进现有的方法/技术来解决腐蚀问题或提供新的解决方案来弥补技术差距?
摘要描述:石油和天然气应用,特别是钻井应用的要求不断增加。新的钻井技术需要能够满足机械、磁性和腐蚀性能方面的挑战性要求的材料。新的油气田在海底更深的深度进行勘探,为了进行这些勘探,应该开发新材料。这些新材料必须表现出高强度,屈服强度高于 1035 MPa (150 ksi),并且在钻井液高温和盐度结合的恶劣环境中具有出色的腐蚀性能。德国 Edelstahlwerke 开发了一种满足钻井应用苛刻要求的新材料解决方案。新开发的无磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢采用感应炉中的传统炼钢工艺、随后的电渣重熔和热加工生产。这种新型 FeCrMnMo-HIS 具有强度高、韧性好、耐腐蚀性能强等特点。固溶退火后,该材料完全为奥氏体,伸长率高于 60%,屈服强度和极限强度分别为 600 MPa (87 ksi) 和 980 MPa (142 ksi),冲击能量高,高于 350 J (> 258 ft-lbs)。FeCrMnMo-HIS 钢未经敏化处理,未发生晶间腐蚀,在室温下氯化铁溶液中测试 72 小时后未失重,且具有较高的点蚀潜力。临界点蚀温度为 35 °C (95 °F)。此外,HI-Steel 在 108 °C (226 °F) 的饱和 NaCl 中具有抗应力腐蚀开裂性。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。1.创新是什么?开发了一种新型非磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。2.这项创新是如何实现的?%)。该钢采用传统炼钢工艺生产。这项工作于 2017 年开始,目前仍在进行中。开发了一种新型非磁性高间隙(FeCrMnMo(C+N))奥氏体不锈钢,其名义成分为 Fe-18Cr-18Mn-2Mo-1(C+N)(wt.它在固溶退火条件下具有良好的伸长率、强度和冲击能量组合。抗点蚀当量数 (PREN) 高于 35。高间隙(HI)钢在不同环境下表现出良好的抗应力腐蚀开裂和点蚀性能。新型高间隙 FeCrMnMo 奥氏体不锈钢是一种非常有前途的牌号,适用于石油和天然气工业,因为其机械强度高于 1000 MPa(145 Ksi)且具有良好的腐蚀性能。3.描述腐蚀问题或技术差距激发了创新的发展。创新如何改进现有的方法/技术来解决腐蚀问题或提供新的解决方案来弥补技术差距?
通过曲霉sp。在生产和表征β-糖苷酶的生产和表征中使用农业废物。在固态种植中,爱德华多·达·席尔瓦·马丁斯(Eduardo Da Silva Martins); Heytor Lemos Martins摘要至β-糖苷酶是具有各种工业应用的纤维素分解酶,例如在果汁,葡萄酒和生物燃料生产行业中。这项工作旨在评估真菌Aspergillus sp的农业工业废物使用的潜力。并确定培养参数以增加酶活性。评估了以下参数:底物类型,培养时间,补充营养溶液,养分溶液pH,初始底物湿度和真菌孵育温度。在发现的最佳状态下,酶的特征是与pH和最佳温度以及对这些因素的稳定性有关。β-糖苷酶活性值在由小麦麸皮和甘蔗渣(1:1 p/p)组成的底物(1:1 p/p),小麦麸皮和麦芽渣(1:1 p/p)(1:1 p/p)以及三种底物的混合物中(1:1:1 p/p)的混合物中,与作物和袋装混合物的混合物中,β-糖苷酶活性显示出显着差异。麦芽(1:1 w/p)。 酶活性在以下培养条件下较高:由Nh 4中的NH 4组成的营养溶液,MGSO 4 .7H 2 O和(NH 4)2 SO 4(0.1%),pH 4.5和5.5,真菌在35°C下的真菌孵育温度,初始底物水分为65%。 酶在4.5和5.5之间的pH范围内显示出较高的活性,并且稳定性范围很广(3.0至8.0)。 ,2021)。β-糖苷酶活性显示出显着差异。麦芽(1:1 w/p)。酶活性在以下培养条件下较高:由Nh 4中的NH 4组成的营养溶液,MGSO 4 .7H 2 O和(NH 4)2 SO 4(0.1%),pH 4.5和5.5,真菌在35°C下的真菌孵育温度,初始底物水分为65%。酶在4.5和5.5之间的pH范围内显示出较高的活性,并且稳定性范围很广(3.0至8.0)。,2021)。最佳温度为65°C,酶的稳定性超过70%,至1H,最高为55°C。使用农业废物为真菌提供了高产生β-糖苷酶的生产,具有具有工业应用潜力的酶。关键字:木质纤维素材料;酶;细胞;菌;生物降解。1引言β-糖苷酶是在各种生物体中执行生化,生理和营养功能的纤维素酶。从了解其作用机理的知识中,正在制作各种工业应用,例如生物燃料生产的木质纤维素水解;水果和葡萄酒中的糖苷水解以改善香气;来自糖苷结合物的生物活性敏捷的合成;以及有用的化妆品和洗涤剂成分的烷基糖苷的生产(Godse等人可以使用适当的碳和氮来源和低成本来实现生产成本的降低和纤维素性能的改善。因此,使用农业废物在获取酶中可以减少其全球生产成本。此外,从环境的角度来看,这些废物在生物过程中的应用变得很重要,从而减少了与其管理不足和随之而来的环境损害有关的问题(Santos等人,2016年; Devi等。,2022)。
摘要 凿井是地下矿山的一项经典活动。在横截面积较小的竖井或机械化指数较低的矿井中,通常使用手动风钻和炸药筒爆破,采用自然通风或带有轴流风扇的柔性管道排出气体和烟雾,用手铲将矿渣铲入可提升的倾卸斗中。这里研究了这种类型的系统,包括一个矩形横截面竖井(3.7 mx 2.0 m),最终深度为 94 m,开挖目的是在露天矿工业启动前获取中试规模矿物加工试验的样品。竖井有一个混凝土套管,其墙壁由间距 1.5 m 的木板和 25 mm 厚的木板作为衬砌支撑。该竖井是在位于 Chapada(巴西 Mara Rosa 市)的变质热液铜金矿床的片岩中开挖的。对涵盖一个月活动的每日生产工作表进行了统计分析,涵盖了整个采矿作业周期,即钻孔、装药和爆破、烟尘排放、出渣、修整和刮平壁面和工作面以及安装支撑系统。还量化了作业停机时间。生产力指标的统计分析可以检测作业的关键点并为类似的采矿作业建立参考。关键词:矿山工作;地下矿;小型矿;统计分布。摘要 矿山基础是地下矿山的经典活动。 Em poços de pequena seção transversal ou em minas com baixos índices de mecanização é comum or uso de perfuratrizes pneumáticas manuais e desmonte por gelatin explosiva em cartuchos, empregando tiragem natural ou dutos flexíveis com ventiladores axiais para exaustão degas e fumos,删除古手册中的材料并通过 caçambas basculantes içáveis 进行运输。系统设计为矩形截面 (3,7 mx 2,0 m),最终高度为 94 m,可通过逐步升级的矿物开采方法,在工业领域开展邮政业务。在这个时代,我们以 25 毫米的 25 毫米马德拉四边形为基础,以 25 毫米的速度进行了马德拉四边形的支撑。可以在 Chapada(巴西玛拉罗莎市)的水温变质过程中快速解决问题。论坛分析统计为坎帕尼亚的生产日记、更改所有操作的待办事项、名称:性能、保养和装饰、排气、材料装饰、装饰和面孔esscoramento 系统蒙太奇。作为paradas de operação Também foram quantificadas。生产率指标的统计分析可以发现作业中的关键点,并为类似的采矿作业建立参考。关键词:矿山工作;地下矿井;小型地雷;统计分布。摘要 凿井是地下矿山的一项经典活动。在小井或机械化程度较低的矿井中,通常使用手动风钻并使用药筒中的炸药明胶进行爆破,使用自然通风或带有轴流风扇的柔性管道进行气体和烟雾抽排,用手动铲子清除碎片材料并提升翻斗。这里进行了一项研究
伯克利地质年代学中心和加州大学伯克利分校的舒斯特实验室 实验室描述 PI Shuster 负责 BGC 和 UCB 的实验室设施,用于样品制备、特性分析、(U-Th)/He 和 4 He/3 He 热年代学以及宇宙成因核素分析。 设施包括: BGC 惰性气体实验室。BGC 惰性气体实验室设有: • 惰性气体热年代学实验室 (NGTL)。该设施设计用于 4 He/3 He 热年代学、40 Ar/39 Ar 热年代学、通过控制热提取表征惰性气体扩散动力学以及宇宙成因 21 Ne 和 3 He 测量。该实验室还可用作传统的 (U-Th)/He 实验室。NGTL 包括 (i) 经过校准的双目显微镜和摄像系统,用于制备和测量样品的几何形状; (ii) 超高真空 NG 提取系统,包括三个带有光束传输光学器件和高温计和热电偶反馈控制的二极管激光系统,在 175-1500 o C 之间提供优于 +/- 10 o C 的精度和准确度;(iii) 气体净化系统,包括 Janis 低温系统和校准标准和气体加标系统;(iv) Pfeiffer 气源四极杆质谱仪,用于使用同位素稀释测量 NG 丰度;(v) 可调收集狭缝 MAP-215-50 扇区场 NG 质谱仪,用于高精度同位素比测量;(vi) 激光烧蚀 ICPMS 实验室(如下所述),用于测量 U 和 Th。NGTL 的初始建设部分由 NSF MRI 拨款 EAR-0618219 资助,授予 PI Shuster,并继续获得 Ann 和 Gordon Getty 基金会的支持。 NGTL 实验室包括第二个可调收集狭缝 MAP-215-50 NG 质谱仪,该质谱仪配备自动稀有气体提取和低温纯化系统,可与上面描述的 NGTL 激光加热系统耦合,并针对宇宙成因 3 He 和 21 Ne 测量进行了优化,最初由 NSF I&F 计划拨款 EAR-1054079 资助给 PI Shuster。BGC U 子实验室。BGC U 子实验室包括一个带有过滤空气供应的温控仪器室,其中设有 LA-ICPMS 设备;一个相邻的 HEPA 过滤清洁化学实验室;以及专用的样品制备设施。• 激光烧蚀 ICPMS 实验室。该设施用于通过同位素稀释和激光烧蚀测量磷灰石和/或锆石中的 U 和 Th 浓度,以进行 (U-Th)/He 测定和 4 He/3 He 热年代学。该设备还用于通过同位素稀释法测量石英中的铀和钍,这对于解释宇宙成因 21 Ne 测量结果必不可少。它由 Thermo Fisher Scientific Neptune Plus 多接收器 ICPMS 组成,配有九个法拉第探测器,带有计算机切换的 10 11 和 10 12 欧姆输入电阻、具有离子计数和高丰度灵敏度离子能量过滤器的离散倍增电极电子倍增器、大容量干式接口泵以及高性能样品和撇取锥。该实验室最初由 NSF MRI 拨款 EAR-0930054 资助给 PI W. Sharp 和 D. Shuster,并继续获得 Ann and Gordon Getty 基金会的支持。UCB 和 BGC 的湿化学实验室。BGC 和附近的加州大学伯克利分校地球和行星科学系的 PI Shuster 可以使用专用的湿化学实验室空间。这些实验室包括标准通风柜(适用于矿物分离、酸蚀样品制备和常规(即非空白限制)石英中的 Be 提取)和一个过滤空气层流下流罩(适用于低空白 Be 提取化学)。