在美国使用植入前基因检测(PGT-A)的使用一直在稳步增加。此外,用于24种染色体分析的基础技术继续迅速发展。尚未证明PGT-A作为常规筛查测试的价值。尽管一些较早的单中心研究报告说,PGT-A对有利的先知患者的活出生率较高,但最近在具有可用胚泡的女性的多中心,随机对照试验得出的结论是,通过冷冻胚胎转移的整体妊娠结局在PGT-A中相似,在PGT-A和便利性肥料之间相似。PGT-A对降低临床流产的风险的价值尚不清楚,尽管这些研究具有重要的局限性。本文档替换了同名文档,最后在2018年发布。(fertil Steril 2024; 122:421 - 34。2024美国生殖医学学会。)El Resumenestádodanibleenespañolalfinal delartículo。
胞嘧啶DNA甲基化参与了转座元件(TE)沉默,烙印和X染色体灭活。植物DNA甲基化由Met1(Mammalian DNMT1),DRM2(哺乳动物DNMT3)和两个植物特异性DNA甲基转移酶,CMT2和CMT3介导(Law and Jacobsen,2010年)。DRM2通过植物特异性RNA指导的DNA甲基化(RDDM)途径建立了植物中的从头DNA甲基化,依赖于两个DNA依赖性RNA聚合酶,POL IV和POL V(Gallego-Bartolome et al。木薯的DNA甲基团先前已根据其单倍体倒塌的基因组进行了记录(Wang等,2015)。由于木薯基因组是高度杂合的,因此单倍型折叠基因组的DNA甲基团错过了甲基体的许多特征。With the development of long-read sequencing and chromosomal conformation capture techniques, haplotype-resolved genomes are available for highly heterozygous genomes (Mansfeld et al., 2021 ; Qi et al., 2022 ; Sun et al., 2022 ; Zhou et al., 2020 ), which provides high-quality reference genomes facilitating studies of haplotype-resolved DNA甲基组。为了剖析木薯的单倍型分辨DNA甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基(TME7和TME204)在两个单倍型基因组分辨率(TME7和TME204)中进行了研究。 Al。,2021;测序读数分别映射到不同的单倍型,允许零不匹配和一个最佳命中,这允许分离属于不同单倍型的读数。总体而言,我们发现尽管使用了WGB和EM-SEQ方法,但两种单倍型具有相似的整体
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2024 年 5 月 18 日发布。;https://doi.org/10.1101/2024.05.15.594413 doi:bioRxiv preprint
AVEVA Predictive Analytics 是一种资产绩效管理解决方案,可在设备故障发生前几天、几周甚至几个月提供预警通知和诊断。这有助于 PETRONAS 等资产密集型组织减少设备停机时间、提高可靠性、提高性能和安全性,并减少运营和维护支出。在 PETRONAS,该解决方案与 OSIsoft(现为 AVEVA 的一部分)的 PI System 配合使用,后者收集工厂中关键资产的数据。PI System 收集并构建这些数据以进行历史化和分析。基于 AI 的 AVEVA Predictive Analytics 模型使用这些数据来突出显示任何异常、趋势、潜在事件或故障,并使团队能够根据需要进行改进。
Berkshire Hathaway Inc.(沃伦·E·巴菲特持有其 31.89023% 的股份)德国 47-0813844 Acme Building Brands, Inc. 德国 75-2864968 Acme Brick Company 德国 75-2403336 Acme Brick DFW, LLC 德国 83-0429401 Acme Brick Sales Company, LLC 德国 20-3883479 Acme Ochs Brick and Stone, Inc. 德国 35-2323613 Alpha Cargo Motor Express, Inc. 德克萨斯州 75-1379033 Denver Brick Company 科罗拉多州 84-0861986 Innovative Building Products, Inc. 德克萨斯州 75-2230919 Acme Management Company 德国 75-2403337 Acme Services Company, LLC 德国 75-2514346 Affordable Housing Partners, Inc. 德国45-3769803 AHP 1, LP DE 30-0761132 AHP Affordable, LLC DE 80-0847095 AHP Federal and State Affordable 2, LLC DE 84-3755052 AHP Federal and State Affordable 3, LLC DE 84-3786733 AHP Housing Fund 1, LLC NV 35-2447768 Reliance-Hospital Ground Associates, Limited Liability Limited Partnership VI 27-5494476 AHP Housing Fund 2, LLC NV 30-0741786 Riser Road Partners, LP MS 45-4080344 AHP Housing Fund 3, LLC NV 61-1690303 GCI Fund XVIII, LP MO 27-2114103 AHP Housing Fund 4, LLC NV 35-2447999 Deer Path SLF, LLC 伊利诺伊州 45-5028590 AHP Housing Fund 8, LLC 德国 38-3879542 DHI-Kachina Apartments, LLC 亚利桑那州 45-4422417 AHP Housing Fund 9, LLC 德国 38-3879644 Bulldogger-GMC, 有限合伙企业 俄克拉荷马州 45-3823323 AHP Housing Fund 10, LLC 德国 38-3879703 Ironman-GMC, 有限合伙企业 俄克拉荷马州 45-3823308 AHP Housing Fund 11, LLC 德国 37-1698937 WC-GMC, 有限合伙企业 俄克拉荷马州 45-5369890 AHP Housing Fund 12, LLC 德国 37-1698993 WP-GMC, 有限合伙企业 俄克拉荷马州 45-5378535 AHP Housing Fund 14, LLC DE 38-3882204 Steele Lawton Pointe LLC OK 35-2428497 Steele Tower Apartments, LLC SD 27-4237579 AHP Housing Fund 15, LLC DE 61-1690180 AHP Housing Fund 16, LLC DE 37-1700908 Artisan American JPA, LP LA 45-4102030 AHP Housing Fund 17, LLC DE 36-4740813 Playa del Pueblo, Ltd. TX 45-3171599 AHP Housing Fund 18, LLC DE 30-0748965 Lofts at Roberts, LLC IN 45-4645174 AHP Housing Fund 19, LLC DE 36-4741393 Dovecoast Housing, LP TX 46-1164026 AHP Housing Fund 20, LLC 德国 37-1701500 Foxfire Apartments Limited Dividend Housing Association, LLC 密歇根州 45-4300290 AHP Housing Fund 21, LLC 德国 36-4745479 Silver Moon Lodge LLLP 新墨西哥州 46-2629154 AHP Housing Fund 22, LLC 德国 30-0753286 Park Manor Estates II LP 明尼苏达州 45-2486547 AHP Housing Fund 23, LLC 德国 61-1696001 Alexandria Housing LLLP 明尼苏达州 20-5006642 AHP Housing Fund 24, LLC 德国 38-3889831 Point Place Partners, LP 密西西比州 46-1285759 AHP Housing Fund 25, LLC 德国 32-0392000 Jackson Square Housing, LLC 北卡罗来纳州 46-1139252 AHP Housing Fund 26, LLC 德国 61-1698204 Mixed Income, LLC NV 45-1767288 AHP Housing Fund 27, LLC 德国 35-2460781 Plaza Square 50 LP MO 45-4776750 AHP Housing Fund 28, LLC 德国 36-4747707 Westgate Senior Limited Dividend Housing Association, LLC MI 46-0710685 AHP Housing Fund 29, LLC 德国 38-3892372 Logan 24, LP,爱荷华州有限合伙公司 IA 45-4738103 AHP Housing Fund 30, LLC 德国 32-0394468 Centerline AHP Housing LLC NJ 46-2621376 Woodbury Oakwood Urban Renewal Preservation, LP NJ 45-3478219 AHP Housing Fund 31, LLC 德国38-3897538 Serenity Park 协会,LP OK 27-3546759 AHP Housing Fund 32, LLC DE 35-2467652 Sugar Hill Crossing, LLC LA 45-1203819
本综述讨论了人工智能 (AI) 算法在体外受精程序中植入前遗传检测中无创预测胚胎倍性状态的应用。目前的黄金标准,即非整倍体的植入前遗传检测,具有诸如侵入性活检、经济负担、结果报告延迟和结果报告困难等局限性。本文探索了无创倍性筛查方法,包括囊胚腔液取样、废培养基检测以及使用胚胎图像和临床参数的人工智能算法。人们已经使用不同的机器学习算法开发了各种人工智能模型,例如随机森林分类器和逻辑回归,这些模型在预测整倍体方面表现出不同的性能。静态胚胎成像与人工智能算法相结合在倍性预测方面表现出良好的准确性,其中胚胎排名智能分类算法和 STORK-A 等模型的表现优于人工评分。通过人工智能算法分析的延时胚胎成像也显示出预测倍性状态的潜力;然而,纳入临床参数对于提高这些模型的预测价值至关重要。嵌合性是胚胎分类的一个重要方面,但在人工智能算法中经常被忽视,应该在未来的研究中加以考虑。将人工智能算法集成到显微镜设备和胚胎镜平台中将有助于进行无创基因检测。进一步开发优化临床考虑并纳入最低必要协变量的算法也将提高人工智能在胚胎选择中的预测价值。基于人工智能的倍性预测有可能提高妊娠率并降低体外受精周期的成本。(Fertil Steril 2023;120:228 – 34。2023 年,美国生殖医学会。)关键词:人工智能、机器学习、无创基因筛查、延时成像、辅助生殖
抽象的人群遗传研究表明,波斯尼亚 - 黑塞哥维那(B&H)的种群是欧洲基因库的一部分,但直到现在,有关古代B&H种群的遗传结构的信息有限。在这方面,我们的研究目的是确定中世纪波斯尼亚人口的线粒体DNA(mtDNA)单倍群的频率和分布。根据中世纪波斯尼亚边界,从位于B&H的中世纪墓地发掘的三十四个样本在本研究中进行了分析。对MTDNA HVS1区域的测序和RFLP分析进行了单倍群测定。在我们的研究中,所有32个样品均被鉴定为单倍群H,分别在30和2个样品中确定了亚aplogroups H2A和H5。在研究样本和先前对B&H当代种群的研究之间,H单倍群的频率显着差异,其中H单倍型频率约为当前研究中确定的一半。与B&H以外的其他中世纪种群相比,H单倍型频率也存在显着差异,而古代B&H种群与古代
生理学和生物物理学系(J Barnes、M Brendel MEng、M Brendel MEng、S Rajendran BS、J Kim MEng、P Zisimopoulos MSc、A Sigaras MSc、P Khosravi PhD、Prof O Element PhD、I Hajirasouliha PhD)[ PubMed ] Zisimopoulos、A Cigars、P Khosravi、Prof O Element、I Hajirasouliha 和 Ronald O Perelman 和 Claudia Cohen 生殖医学中心(JE Malmsten DPS、Q Zhan PhD、Prof Z Rosenwaks MD、N Zaninovic PhD)。和迈耶癌症中心(Prof O Element、I Hajirasouliha)和 WorldQuant 定量预测计划(Prof O Element),威尔康奈尔医学院,纽约,纽约州,美国;美国纽约州康奈尔大学三机构计算生物学和医学项目(VR Gao、S Rajendran、Q Li); QED Analytics,美国新泽西州普林斯顿(JT Sierra 博士);美国纽约州纽约纪念斯隆凯特琳癌症中心流行病学和生物统计学系计算肿瘤学(P Khosravi); IVI Valencia,西班牙瓦伦西亚信仰健康研究所(M Meseguer 博士)
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年11月18日。 https://doi.org/10.1101/2024.11.16.623962 doi:Biorxiv Preprint
摘要背景:对于延时摄影技术(TLT)与胚胎倍性状态之间的关联,目前尚未完全阐明。TLT具有数据量大、非侵入性的特点。如果想从TLT准确预测胚胎倍性状态,人工智能(AI)技术是一个不错的选择。但目前AI在该领域的工作需要加强。方法:研究共纳入2018年4月至2019年11月的469个植入前遗传学检测(PGT)周期和1803个囊胚。所有胚胎图像均在受精后5或6天内通过延时显微镜系统捕获,然后进行活检。所有整倍体胚胎或非整倍体胚胎均用作数据集。数据集分为训练集、验证集和测试集。训练集主要用于模型训练,验证集主要用于调整模型的超参数和对模型进行初步评估,测试集用于评估模型的泛化能力。为了更好的验证,我们使用了训练数据之外的数据进行外部验证。从2019年12月至2020年12月共155个PGT周期,523个囊胚被纳入验证过程。结果:整倍体预测算法(EPA)能够在测试数据集上预测整倍体,曲线下面积(AUC)为0.80。结论:TLT孵化器已逐渐成为生殖中心的选择。我们的AI模型EPA可以根据TLT数据很好地预测胚胎的倍性。我们希望该系统将来可以服务于所有体外受精和胚胎移植(IVF-ET)患者,让胚胎学家在选择最佳胚胎进行移植时拥有更多非侵入性辅助手段。关键词:AI,倍性状态,延时,PGT,预测