使用替代机制来耗散或散射,双态结构和机械超材料已经显示出有望通过将能量锁定到紧张的材料中来减轻影响的有害影响。在本文中,我们扩展了通过双层超材料吸收吸收的先前工作,以探索动能传递对撞击器速度和质量的依赖性,而应变速率超过10 2 s -1。我们观察到对两个影响器参数的依赖性很大,范围从比比较线性材料的显着性能到更差的性能。然后,我们将性能的可变性与系统中的孤立波的形成相关联,并在动态载荷下对理想化的能量吸收能力进行分析估计。此外,我们发现对阻尼的依赖性显着,并在系统内部的单个波传播中存在定性差异。这项研究中揭示的复杂动力学是为将双材料超材料应用于包括人类和工程系统冲击和影响保护设备在内的应用的潜在未来指南。
慢性创伤性脑病(CTE)是一种与重复头部撞击(RHI)相关的神经退行性疾病,其特征在于血管周围的高磷酸化TAU(P-TAU)沉积物。尚不清楚血管损伤,血脑屏障泄漏和神经链球肿瘤在CTE发病机理中的作用。我们对细胞间粘附分子1(ICAM1),血管粘附分子1(VCAM1)和C反应蛋白(CRP)进行了定量免疫测定,内部和没有RHI和CTE的参与者的C反应蛋白(CRP)(CRP)小胶质细胞增多和tau病理学措施。与rhi-parposed and-naıwe对照相比,CTE的血管损伤相关标记ICAM1,VCAM1和CRP水平增加。ICAM1和CRP随RHI暴露持续时间增加(p <0.01),与小胶质细胞密度增加(P <0.001)和Tau病理学(AT8,P-TAU396,P-TAU202; P <0.05)有关。在组织学上,与低阶段CTE和对照组相比,高阶段CTE的微脉管系统,细胞外空间和星形胶质细胞的ICAM1染色显着增加。在所有暴露的个体中都存在血清白蛋白的多灶性周围免疫反应性。这些发现表明,血管损伤标记与RHI暴露,持续时间和小胶质细胞增多有关,CTE的升高和疾病严重程度的增加。
液滴撞击动力学一直是液滴研究的重点和热点,深入挖掘液滴撞击动力学机理有利于自上而下指导和优化材料设计。随着高速成像技术的发展和创新[13],液滴撞击的瞬态流动可以在微观时间尺度上被清晰地记录下来。单个液滴在不同表面的撞击得到了更广泛的研究。Richard等人认为液滴撞击光滑超疏水表面的接触时间与撞击速度无关,而与液滴半径的3/2次方成正比。[14]对于具有圆对称扩散和反冲的液滴撞击,存在一个接触时间的理论极限( / / 2.2 0 3 t R τ ρ σ = ≥ ∗,[15]其中,ρ是液体的密度,R 0是液滴半径,σ是其表面张力,t是固液接触时间)。为了突破这一极限,科学家通过设计和修改超疏水材料的表面结构,强化和精确控制单个液滴的反弹行为,如减少4倍接触时间的煎饼反弹[16]和7300 r min −1 的旋转反弹[17]。虽然这些研究已经被广泛应用于解决喷墨打印[18]、微流体[19]和喷雾[20]的问题,但较少受到关注的多液滴模型在自然界、日常生活和工程中更为常见和适用(例如,冻雨对电网的灾难性影响)。多液滴模型可分为连续液滴[21]、液滴列车[22]、同时液滴[23]和液滴喷雾[24]等。越接近真实情况,越复杂,研究难度越大。[25]作为该领域的先驱,Fujimoto等人[26]和Schwarzmann等人[27]在多液滴模型中[28]进行了系统研究。采用闪光照相法和数值模拟相结合的方法,研究了液滴直径和撞击速度对液滴撞击固体的影响。[26,27] Sanjay等人用撞击油滴从超疏水表面提起静止的油滴,观察到了随着韦伯数(ρσ=02WeDv,其中D0为液滴直径,v为撞击速度)和质心偏移而产生的六种结果,其中四种结果不是聚结而是反弹。[28] Damak等人实验研究了液滴连续撞击超疏水表面的最大膨胀直径和回缩速率,并建立了通用模型来描述它们。[29]由于多体问题的复杂性和相互作用,大多数学者主要使用数值模拟
B-2A 是 GBU-38 的门槛平台,也就是说,它是美国武装部队中第一架配备这种新武器的飞机。因此,由于 B-2A 能够携带大量 500 磅级弹药,武器的设计和集成有了新的突破。B-2 在两个并排的武器舱中携带 80 枚 GBU-38 弹药,每个武器舱有 40 枚武器。每个武器舱内都有前后弹药架,各有 20 枚弹药。与所有武器系统一样,从 HF 的角度来看,添加新功能的挑战在于将新设计集成到现有显示器中,并符合特定设计的软件接口控制文档 (ICD)。本论文主要关注三个领域。1) 人机界面和及时控制大量制导武器;2) 在有限的空间内显示大量信息(这一直是航空和驾驶舱设计的挑战); 3)从HF角度考虑任务就业问题。
B-2A 是 GBU-38 的入门平台,即它是美国武装部队中第一架配备这种新武器的飞机。因此,由于 B-2A 能够携带大量 500 磅级弹药,武器的设计和集成有了新的突破。B-2 在两个并排的武器舱中携带 80 枚 GBU-38 弹药,每个武器舱有 40 枚武器。每个武器舱内都有前后弹架,每个弹架有 20 枚弹药。与所有武器系统一样,从 HF 的角度来看,添加新东西的挑战是将新设计集成到现有显示器中,并符合特定设计的软件接口控制文档 (ICD)。本论文主要关注三个领域。1) 人机界面和及时控制大量制导武器; 2) 在有限的空间内显示大量信息(这一直是航空和驾驶舱设计的挑战); 3) 从 HF 角度考虑任务使用。
观测近地环境中的尘埃和碎片是一个具有巨大商业和科学意义的领域,对于最大限度地延长卫星的运行和商业生命周期以及降低日益增多的低地球轨道 (LEO) 宇航员的风险至关重要。为此,监测和评估粒子通量对于航天工业和依赖轨道基础设施数据产品/服务的更广泛的社会经济利益至关重要。我们设计了一种被动式太空尘埃探测器来调查低地球轨道的尘埃环境——轨道尘埃撞击实验 (ODIE)。ODIE 设计用于在低地球轨道部署约 1 年,然后返回地球分析尘埃颗粒产生的撞击特征。该设计强调能够区分与人类太空活动有关的轨道碎片 (OD) 和自然产生的毫米到亚毫米级微流星体 (MM) 群。 ODIE 由多个 Kapton 箔组成,这些箔显示出巨大潜力,可以有效保存撞击粒子的尺寸和化学细节,残留物化学可用于解释来源(OD 与 MM)。LEO 是一个恶劣的环境——原子氧的强烈腐蚀作用会损坏 Kapton 箔——需要使用保护涂层。Kapton 的常见涂层(例如 Al、SiO 2 等)对于后续分析和解释 OD 与 MM 的来源存在问题,因为它们是 MM 或 OD 的常见元素成分,或者 X 射线发射峰与用于区分 MM 与 OD 的元素的峰重叠。因此,我们建议使用钯涂层作为此应用的替代品。在这里,我们报告了钯作为 Kapton 基被动式粉尘探测器的保护涂层在暴露于原子氧和撞击时的性能。当受到撞击时,我们观察到较厚的涂层会受到影响
阿拉伯地区对共享水资源表现出很大的依赖,大多数阿拉伯国家都依靠与邻近的阿拉伯国家或该地区以外的国家共享的供水。实际上,超过三分之一的淡水资源来自该地区边界之外。在共享地表水方面,22个阿拉伯国家中有14个具有地表水体。1该地区也是世界上最稀缺的地区之一。这种稀缺性在农业部门表现出来,这是阿拉伯国家的粮食安全和生计的重要来源,以及最大的水消费者,在整个地区平均有80%的淡水资源,用于农业使用。2个预计的气候变化对水利用率的影响往往会加剧对水资源的现有压力。Findings from the Regional Initiative for the Assessment of Climate Change Impacts on Water Resources and Socio-Economic Vulnerability in the Arab Region (RICCAR) indicate that temperatures are projected to increase by 1.2°C – 2.6°C by mid-century and up to 4.8°C by the end of the century, as well as increased spatial-temporal variability of precipitation.这些因素显着影响淡水供应对所有依赖水的部门,尤其是农业的数量和质量,威胁到该地区的粮食安全。
自1957年首次发射人造卫星以来,人类太空活动的增加导致了空间碎片的恶化。地球轨道中出现了大量的微小空间碎屑(从毫米到微米水平),其超速影响将对航天器的结构和功能单位造成严重破坏,包括机舱外表面,热屏障材料,热式conteral层,热造型涂料,太阳能板,管道,管道,果皮和电缆。为了确保航天器的安全操作和太空任务的完成,有必要检测和评估由空间碎片造成的影响损害,以提高风险警告和及时维修。由于航天器的综合外表面材料以及冲击损害事件的不可预测性,因此,指向的损伤检测数据呈现了各种复杂的特征信息。基于特征参数的手动提取的传统损害识别和评估方法难以准确描述上述复杂的特征信息。近年来,人工智能(AI)技术在太空碎片影响
摘要:本文讨论了脑组织机械行为的非线性粘塑性模型的数值方面和实现,以模拟与可能导致创伤的冲击载荷相关的动态响应。在现有的各种粘弹性模型中,我们特意考虑修改诺顿-霍夫模型,以引入非典型的粘塑性软化行为,模拟快速撞击后仅几毫秒的大脑反应。我们描述了模型的离散化和三维实现,目的是在合理的计算时间内获得准确的数值结果。由于问题的规模大、复杂性,采用了时空有限元法的并行计算技术来提高计算效率。事实证明,经过校准后,引入的粘塑性软化模型比常用的粘弹性模型更适合模拟快速冲击载荷特定情况下的脑组织行为。