3.1 零排放氧气-磁流体力学发电 ...................................................................................................................... 17 3.2 燃烧器设计 .......................................................................................................................................... 18 3.3 磁流体力学通道和扩散器 ...................................................................................................................... 19 3.4 磁场 ............................................................................................................................................. 21 3.5 颗粒播种和再生 ............................................................................................................................. 22 3.6 电流逆变器 ...................................................................................................................................... 22 3.7 用于 CO2-EOR 的氧气-磁流体力学概念设计 ............................................................................. 23 3.8 初步经济评估 ............................................................................................................................. 24
基于植物生长促进细菌的固体和液体制剂枯草芽孢杆菌BS006被设计为蔬菜苗圃生产的生物接种剂。考虑到从生产过程到土壤应用的微生物生存的重要性,在20、30和40°C的十二个月内评估了每个配方中的孢子生存力(CFU)。在评估的三个温度水平下,固体和液体配方的生存率分别高于85和90%。将细菌生物学活性评估为苗圃中的生菜,西兰花和番茄的植物生长促进。在播种和播种后21天,以三个浓度(1x10 7,5x10 7,1x10 8 cfu/ml)施加制剂。根和空中长度和干重是评估响应变量。观察到了积极的效果,特别是在1x10 8孢子/ml的液体配方中,显示了根和空中部位的最长长度,并且根和叶面部分中的干重值最高。关于内生芽孢杆菌,枯草芽孢杆菌定植的根,茎和叶,达到8x10 2至1x10 5 cfu/g之间的浓度。
摘要。本文通过播种大麻(大麻sativa L.)进行了定量评估碳沉积的结果。在Khabibrakhmanov农民企业(Bashkortostan共和国)进行了现场研究,植物生物量中的碳含量由CN 802分析仪确定。发现在生长季节结束时,大麻作物形成7.87 t/ha地上生物量,包括茎 - 6.40 t/ha(占地上质量的81.3%),花序 - 0.77 t/ha(0.77 t/ha(9.8%的地上质量),种子-0.70 t/ha(8.70 t/ha(8.70 t/ha)(8.9%的地上质量)和质量/质量。保留了8.19吨/公顷。播种从大气中捕获了相对较大的二氧化碳(14.78 t/ha),因此,碳(4.03 t/ha)。大麻在脱碳方面的有效性主要包括在长期进入长期产物并进入土壤中长期储存大量的累积碳(91%)。建议在碳农场种植大麻,以减少碳足迹并出售碳单元。
obayomi,Kehinde Shola,Lau,Sie Yon,Mayowa,Ibitogbe Enoch,Danquah,Michael K,Zhang,Zhang,Jianhua,Chiong,Chiong,Tung,Meunier,Louise和Rahman,Rahman,Mohammad Mahmudur(2022)(2022年)在葡萄源性质地上的进步材料,用于生物播种材料。水过程工程杂志,51。ISSN 2214-7144
Exone是Binder Jet 3D打印技术的先驱和全球领导者。自1995年以来,我们一直在发挥强大的3D打印机的使命,这些打印机可以解决最棘手的问题并实现改变世界的创新。我们的3D打印系统迅速将粉末 - 包括金属,陶瓷,复合材料和沙子 - 变成精密零件,金属播种模具和核心以及创新的工具解决方案。
都柏林市大学的机械与制造工程学院,都柏林9,爱尔兰B医学工程研究中心(Medeng),都柏林城市大学,都柏林9号,爱尔兰C先进加工技术研究中心,都柏林城市大学,都柏林9号,爱尔兰D组织Distrue Engineerering工程小组,解剖学和恢复医学。 Stephen's Green, Dublin 2, Ireland e Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland f Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland g Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College爱尔兰的都柏林,h国家脊柱损伤部门,Mater Misericordiae大学医院,都柏林,爱尔兰I IBET,Biologia de Biologia de Biologia实验性ETecnológica,2781-901 Oeiras,葡萄牙J. Instituto j Instituto j Instituto d de tecnologiaquímicaebiológicaEbiológicanioantounio xavia de llboboa dea dea dea dea dea dea dea dea dea a dea a dea a dea。 Oeiras,葡萄牙K Cappagh国家骨科医院,弗拉斯,都柏林11号,爱尔兰l部分兽医临床科学,兽医学院,都柏林大学学院兽医学院,都柏林4,爱尔兰都柏林市大学的机械与制造工程学院,都柏林9,爱尔兰B医学工程研究中心(Medeng),都柏林城市大学,都柏林9号,爱尔兰C先进加工技术研究中心,都柏林城市大学,都柏林9号,爱尔兰D组织Distrue Engineerering工程小组,解剖学和恢复医学。Stephen's Green, Dublin 2, Ireland e Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland f Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland g Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College爱尔兰的都柏林,h国家脊柱损伤部门,Mater Misericordiae大学医院,都柏林,爱尔兰I IBET,Biologia de Biologia de Biologia实验性ETecnológica,2781-901 Oeiras,葡萄牙J. Instituto j Instituto j Instituto d de tecnologiaquímicaebiológicaEbiológicanioantounio xavia de llboboa dea dea dea dea dea dea dea dea dea a dea a dea a dea。 Oeiras,葡萄牙K Cappagh国家骨科医院,弗拉斯,都柏林11号,爱尔兰l部分兽医临床科学,兽医学院,都柏林大学学院兽医学院,都柏林4,爱尔兰
肿瘤球体是无血管肿瘤生长的体外实验模型。与传统的二维培养物相比,肿瘤球体更紧密地模仿无血管肿瘤微环境,其中养分可用性的空间diûerence强烈影响生长。我们表明,使用明显的Diûer数量的细胞生长到相似的限制大小,这表明血管肿瘤具有极限结构。与肿瘤球体经典数学模型的未经测试的预测一致。我们开发了一种新型的数学和统计框架,以研究从用荧光细胞周期指示器转导的细胞中播种的肿瘤球体的结构,使我们能够区分被捕的和循环细胞并识别被捕的区域。我们的分析表明,瞬态球体结构与初始球体大小无关,并且极限结构可以独立于播种密度。标准实验协议比较球体大小与时间的函数;但是,我们的分析表明,将球体结构与总体大小的函数进行比较会产生对球体大小的变异性相对不敏感的结果。我们的实验观察是使用两种黑色素瘤细胞系进行的,但是我们的建模框架适用于各种球体培养条件和细胞系。
必须谨慎和规划,选择适合特定场地条件的混合物和数量。还必须规划和考虑选择成功的种植和场地准备技术。所有场地必须种植多种草、草本植物和灌木的混合物,才算成功。项目发起人最终负责成功恢复受干扰的场地。项目发起人可以在使用前向 BLM 提交替代种子混合物以供审查和批准。最终目标是恢复受干扰的场地,使其与受干扰前的本地植物群落非常相似。罗林斯实地办公室提供一些标准种子混合物,仅包含本地物种。如果需要使用非本地物种,BLM 政策要求提供需求证明。可以考虑使用非本地物种来防止侵蚀和控制杂草。可以使用由无菌一年生覆盖作物(如三叶草杂交种)组成的种子混合物。不建议使用小麦等非无菌植物作为覆盖作物,因为它具有自我再播种的能力。对于在合理时间内未能达到复垦成功标准的表面扰动区域,需要采取后续播种或纠正侵蚀控制措施。
农业部门正在经历一场向可持续发展的转型,其驱动力是减少对化石燃料的依赖,并将环境影响降至最低。本研究介绍了一种*多用途太阳能农业机器*的设计、开发和评估,该机器能够执行基本的农业任务,例如耕作、播种、土壤准备和灌溉或施肥。该机器集成了 21V 太阳能电池板、24V 2.5Ah 电池存储系统和模块化连接机制,可实现功能之间的无缝切换。该系统专为小规模农民设计,强调成本效益、能源效率和环境可持续性。实地测试表明,该机器每天可高效运行 5-6 小时,太阳能转换率为 18%。耕作模块实现了每小时 0.1 英亩的覆盖率,而播种机制保持了 95% 的准确率。灌溉泵每小时输送 130 升水,满足了典型农业作业的需求。该项目凸显了太阳能多用途机械革新可持续农业的潜力,为降低运营成本和碳足迹提供了切实可行的解决方案。未来的工作将侧重于优化能源存储和扩大模块化附件的范围,以进一步提高多功能性和采用率。