摘要 模仿学习已展现出使机器人获得复杂操作行为的巨大潜力。然而,这些算法在长期任务中样本复杂度较高,复合误差会在任务范围内累积。我们提出了 PRIME(基于数据效率的 PRimitive-based IMitation),这是一个基于行为原语的框架,旨在提高模仿学习的数据效率。PRIME 通过将任务演示分解为原语序列来构建机器人任务,然后通过模仿学习学习高级控制策略对原语进行排序。我们的实验表明,PRIME 在多阶段操作任务中实现了显著的性能提升,模拟成功率比最先进的基线高出 10-34%,在物理硬件上的成功率高出 20-48%。1
摘要 - 从演示中学习(LFD)是将类似人类技能授予机器人的有效框架。然而,设计一个能够无缝模仿,推广和反应在动态环境中长期地平线操纵任务的干扰的LFD框架仍然是一个挑战。为了应对这一挑战,我们提出了Logic-LFD,该逻辑LFD将任务和运动计划(TAMP)与动态运动原始词(DMP)的最佳控制配方相结合,从而使我们能够合并运动级别的Via-via-via-via-via-via-vie-vie-aint-vie-viarpoint规范并处理任务级别的变化或动态环境中的干扰。我们对我们提出的方法对几个基线进行了比较分析,从而评估了其在三个长马操纵任务中的概括能力和反应性。我们的实验证明了逻辑LFD的快速概括和反应性,用于处理任务级别的变体和长距离操纵任务中的干扰。项目网页:https://sites.google.com/view/logic-lfd
摘要 - 从人类示威中学习在机器人操纵中取得了显着的成就。但是,挑战仍然是开发一种与人类的能力和数据效率相匹配的机器人系统,尤其是在复杂的,非结构化的现实世界情景中。我们提出了一个处理RGBD视频的系统,以将人类的动作转化为机器人的原语,并使用接地段的任何东西来识别与任务相关的对象的关键姿势。然后,我们考虑了运动学和碰撞几何形状的人类机器人差异,以解决机器人复制人类行为方面的挑战。为了测试系统的有效性,我们进行了专注于手动洗碗的实验。在模型厨房中记录了单个人类的示例,该系统在每个步骤中取得了50-100%的成功,并且在家庭厨房中使用不同对象的整个任务获得了40%的成功率。视频可从https://robot-dishwashing.github.io获得。索引术语 - 动作学习,操纵,从演示中学习
初步沟通 基于人工智能的车载自动列车障碍物距离估计 Ivan ĆIRIĆ*、Milan PAVLOVIĆ、Milan BANIĆ、Miloš SIMONOVIĆ、Vlastimir NIKOLIĆ 摘要:本文提出了一种新方法,利用图像平面单应性矩阵来改进对摄像机和成像物体之间距离的估计。该方法利用两个平面(图像平面和铁轨平面)之间的单应性矩阵和一个人工神经网络,可根据收集的实验数据减少估计误差。SMART 多传感器车载障碍物检测系统有 3 个视觉传感器——一个 RGB 摄像机、一个热成像摄像机和一个夜视摄像机,以实现更高的可靠性和稳健性。虽然本文提出的方法适用于每个视觉传感器,但所提出的方法是在热成像摄像机和能见度受损场景下进行测试的。估计距离的验证是根据从摄像机支架到实验中涉及的物体(人)的实际测量距离进行的。距离估计的最大误差为 2%,并且所提出的 AI 系统可以在能见度受损的情况下提供可靠的距离估计。 关键词:人工神经网络;自动列车运行;距离估计;单应性;图像处理;机器视觉 1 简介 通过遵循自动化趋势,可以大大提高铁路货运的质量和成本竞争力,以实现经济高效、灵活和有吸引力的服务。今天,自动化和自主操作已经在公路、航空和海运中变得普遍。现代港口拥有自动导引车 (AGV),可将集装箱从起重机运送到轨道旁、仓库、配送中心,而自动驾驶仪是航空公司和大型货船的标准配置,不需要大量机上人员。自动驾驶汽车和卡车的发展已经进入了一个严肃的阶段。此外,轨道交通自主系统的发展主要出现在公共交通服务领域(无人驾驶地铁线路、轻轨交通 (LRT)、旅客捷运系统和自动引导交通 (AGT))。基本思想是使用一定程度的自动化,将操作任务从驾驶员转移到列车控制系统(例如 ERTMS)。根据国际电工委员会 (IEC) 标准 62290-1,列车自主运行 (ATO) 是高度自动化系统的一部分,减少了驾驶员的监督 [1]。对于完全自主的列车运行,列车操作员的所有活动和职责都需要由多个系统接管,这些系统可以感知环境并俯瞰现场,检测列车路径上的潜在危险物体并做出相应的正确反应 [2-6]。障碍物检测系统作为 ATO 系统的主要部分,障碍物检测系统需要根据货运特定和一般用例(例如 EN62267 和/或自动化领域的相关项目)来监控环境。为了满足严格的铁路标准和法规,障碍物检测系统 (ODS) 应在具有挑战性的环境和恶劣的能见度条件下工作。ODS 是一种具有硬件和软件解决方案的机器视觉系统(图 1),用于提供有关铁路上和/或其附近障碍物的可靠信息,并估算从系统到检测到的障碍物的距离 [7]。该系统需要实时运行,并在不同的光照条件下运行(白天、