在工业水开垦的领域,常规技术和先进的氧化过程(AOP)通常在解决有机污染物带来的挑战方面缺乏。电化学技术正在成为一种有希望的解决方案,尤其是为了去除生物危险物质。这项全面的审查研究了各种电化学工具的复杂性,用于处理被有机污染物污染的废水。目标包括阐明基本过程方面的目标,探索操作参数和反应堆设计对性能的影响,严格评估利弊,并通过识别关键的研究点来设想其实际应用潜力。讨论涵盖了直接的电化学氧化,通过电活性氯的间接电化学氧化以及阳极和阴极过程之间的协同作用。审查还严格评估了用于实施这些技术的反应堆选项。另一个方面涉及电容性去离子(CDI),这是一个依赖电气双层形成的必不可少的脱盐过程。一个子类别,插量电容性去离子(ICDI),利用插材料在施加电压后通过离子插入电极晶体结构来实现脱盐。
摘要:气候变化正在推动能源系统从化石能源向可再生能源的转变。在工业、供电系统和电动汽车领域,对电能存储的需求急剧上升。锂电池是最广泛使用的技术之一。必须确定操作参数以将存储系统控制在批准的操作限制内。超出限制的操作,即超过或低于允许的电池电压,会导致电池更快老化或损坏。准确的电池信息是实现最佳和高效的系统运行所必需的。关键是高精度测量、足够准确的电池单元和系统模型以及高效的控制算法。对更好系统的效率和动态性的日益增长的需求要求在确定健康状态和充电状态 (SOC) 时具有很高的准确性。这些对上述主题的科学贡献分为两部分。在本文的第一部分,对主要的 SOC 评估方法进行了全面概述。本文讨论并阐述了物理测量方法、电池建模以及将模型用作电池数字孪生的方法。此外,本文还介绍了对 SOC 计算很重要的自适应方法和人工智能方法。本文的第二部分介绍了应用领域的示例并讨论了它们的准确性。
摘要如今,化石石油油的出现问题已被广泛提出。作为一种传统能源解决方案,科学家最近寻找了一个新概念,以面对传统电源所涉及的问题。在本研究中,解决方案取决于从可再生能源的新来源产生功率的方法。此外,原油和传统电源问题的解决方案应集中于使用太阳能直接或间接发电。解决此问题的最合适的解决方案之一是太阳能烟囱,这是可再生能源技术中有前途的概念之一。太阳能烟囱是可以认为是发电的最佳选择的太阳能方法之一。在这篇评论文章中,对Solar Chimney进行了审查,以找出通过广泛的研究对SCPP技术的几个方面的不同研究,了解太阳能烟囱电厂(SCPP)绩效调查的显着进步。在本评论文章中,根据历史观点,设计增强,基本工作原理,组件和有效的电力生产因素以及优势和缺点研究了太阳能烟囱。关键字:太阳能烟囱电厂,可再生能源,非常规设计,操作参数。
数字孪生范式整合了从传感器数据、物理模型以及物理系统或相关组件的运行和检查/维护/维修历史中获得的信息。随着越来越多的数据可用,由此产生的更新模型在预测系统未来行为方面变得越来越准确,并且可能用于支持多个目标,例如维持、任务规划和作战演习。本演讲将讨论数字孪生方法的最新进展,以基于几种类型的计算来支持所有三个目标:当前状态诊断、模型更新、未来状态预测和决策。所有这些计算都受到系统属性、操作参数、使用和环境的不确定性以及数据和预测模型的不确定性的影响。因此,本演讲将讨论不确定性下的决策以及诊断和预测中的不确定性量化,同时考虑偶然和认知不确定性来源。扩大概率数字孪生方法以支持实时决策是一项挑战,本文将讨论几种结合传感、计算、数据融合和机器学习方面的最新进展以实现扩大规模的策略。本文将介绍与飞机、旋翼机、船舶和增材制造相关的几个用例。
随着纳米级制造技术的高级,光子综合电路的速度和能源效率获得了流动性。一个主要的挑战涉及纤维和纳米光学设备之间的耦合。一个有希望的解决方案是使用光栅耦合器,它可以在芯片上的任何位置正交近似光。虽然已经在SOI平台上牢固地建立,但近年来,它们在诸如罪恶之类的低指数平台上也变得至关重要。这个相对较新的材料平台的特征是其低传播损失和出色的功率处理能力,使其对广泛的应用具有吸引力。虽然标准的光栅耦合器有效地将仅具有一个极化的光,但是无论其极化如何,极化的拆卸光栅耦合器都可以将光线磨合。后者尚未在罪恶平台上实现,使他们的调查特别值得。本文使用FDTD仿真确定了关于sin上2D光栅耦合器设计的操作参数。模拟的最大耦合效率为51。8%,无需使用任何其他返回反射器。此外,还探索了sin上极化的光栅耦合器的发展,其中3D模拟表明这项工作是可以实现的。
摘要:由于最近的大流行和战争,化石燃料的供应中断,不确定性和前所未有的价格上涨,强调了使用可再生能源来满足能源需求的重要性。太阳能空气收集器(SAC)是可用于空间和水加热,干燥和热能储存的主要太阳能系统。尽管在SAC的热分析上有足够的文档,但对热转化的充分性能或定性见解尚无全面评论。本文的主要目的是对优化各种太阳能空气收集器的热性能的最佳条件进行全面审查。根据热液压性能,能量,能量和耐药的利用,诸如温度升高,流量,几何参数,太阳辐射以及雷诺数的影响对SAC的热性能的影响。除了操作参数之外,还概述了一项深入的研究,用于使用SAC技术中的分析和计算流体动力学(CFDS)方法来监视流体动力学。在第三阶段,报道和讨论了由于光损失,吸收剂和环境之间的热损失,吸收剂和环境之间的热损失,隔热,边缘损失和熵产生而引起的热损失,这是用于优化目的的基本工具。
所有 EcoLogic 系列均经过工厂测试,可实现无故障启动。在注入制冷剂和油之前,每个单独的制冷剂回路都经过压力测试、抽真空和真空测试。然后,系统通过 Climatic 控制器进行完整的功能测试,该控制器可对所有外部传感器进行自我诊断。然后将设备放置在测试台上,并进行全面的运行测试,以确保设备在出厂前功能齐全且运行正常。这项详细测试可确保 Climatic 具有标准操作参数,通信和控制序列已安装。检查所有电线和连接,运行和检查冷凝器风扇和压缩机。检查制冷系统操作以确保制冷剂注入正确,膨胀阀设置以及安全和保护装置的运行完全正常。每个 EcoLogic 装置至少要在测试台上花费两个小时。所有工厂安装的选项都经过测试,以确保它们正常运行,并模拟任何客户外部连接,例如流量开关或远程开/关。在测试和记录操作后,该装置将进行最终制冷剂泄漏测试,然后才能进行清洁和精加工。所有外部组件都涂有透明环氧涂层,以帮助保持整个冷却器的外观和耐腐蚀性(可选)。
概述 提供词汇表以帮助读者理解不同的术语和短语。这些术语和短语以斜体显示。本手册中交替使用术语“无人居住”和“夜间退缩”,指代设备运行时间表中除有人居住时间段之外的所有时间段。本手册中交替使用术语“送风”和“排风”,指代通过排风口离开设备的调节空气。 Applied Air 的数字控制系统 AdaptAire 旨在以用户友好的包装为用户提供极致的设备性能和操作灵活性、适应性和可靠性。AdaptAire DDC 系统是 Applied Air 加热和冷却设备的标准组件。由于 AdaptAire 系统涵盖各种类型的设备,因此并非所有系统的功能都与所有设备相关。如果循环和非循环设备或直接燃烧或间接燃烧设备之间的功能相似但不同,则将单独解释该功能。 AdaptAire 可在系统网络上接受单个或多个设备。每个设备均可配备 Equipment Touch 触摸屏界面。Equipment Touch 通过 Equipment Touch 远程终端插头连接到设备控制模块。各个设备的操作参数可通过 Equipment Touch 输入。PC 也可连接到网络。这样可实现
有责任遵守安全标准,并为其硬件、软件和系统提供适当的设计和保护措施,以最大限度地降低风险,避免产品故障或失效可能导致人员伤亡、身体伤害或财产损失(包括数据丢失或损坏)的情况。在客户使用产品、创建包括产品在内的设计或将产品纳入自己的应用程序之前,客户还必须参考并遵守 (a) 所有相关东芝信息的最新版本,包括但不限于本文件、产品规格、数据表和应用说明以及“东芝半导体可靠性手册”中规定的注意事项和条件,以及 (b) 产品将用于或用于的应用程序的说明。客户对其自己的产品设计或应用的所有方面负全部责任,包括但不限于 (a) 确定在此类设计或应用中使用本产品的适当性;(b) 评估和确定本文件或图表、图解、程序、算法、示例应用电路或任何其他参考文件中包含的任何信息的适用性;以及 (c) 验证此类设计和应用的所有操作参数。东芝对客户的产品设计或应用不承担任何责任。·产品既不适用于也不保证用于需要
摘要:高压加湿的循环可以结合高运行动力和高效率。当前的工作引入了这样一个循环,即甲板周期,它提供了必要的燃烧基础设施,可以在蒸汽丰富的氛围中在较宽的燃料品种上运行。详细介绍了循环配置,并在模拟结果的基础上进行了例证。在设计条件下的操作导致高于50%(较低的加热值(LHV))和高于2100 kW/kg空气的电力效率高于50%(较低的加热价值(LHV))(称为进气气)。灵敏度分析将周期性能确定为代表性参数的函数,这为将来的操作和设计改进提供了基础。至于任何燃气轮机循环,可以通过升高涡轮机入口温度,优化节能器的热量恢复并提高工作压力来有效提高托管电力效率。最后,将Topcycle的性能与等效操作参数下的最新组合周期(CC)进行了比较。上周期的电力效率高,功率密度较高,可以将其转移到较小的植物足迹和尺寸中,因此与CC相比,在同等功率输出下的投资成本较低。