按钮布局的一致性,机载显控系统的人机工效研究也 逐渐得到了相关领域的重视。为了解决仪表板日益拥 挤的问题,工程师在第 2 代机电伺服仪表的基础上对 飞行仪表进行综合,也对指示相关信息的仪表进行综 合,减少仪表数量;同时将无线电导航和其他经过计 算机加工的指引信息综合进相关的显示器中,形成第 3 代飞机仪表,即综合指引仪表。综合指引仪表不但 可以显示飞机综合的实时状态信息,同时还通过指引 信息告诉飞行员如何正确操纵飞机,以达到预定飞行 状态或目的地 [5] 。第 3 代头盔显示系统首次采用虚拟 成像技术,可直接将虚拟画面投射到驾驶员的面罩 上,配合计算机图像和数据处理运算技术,具备了实 时呈现画面的能力。 以人工智能、大数据为代表的信息技术在军事领 域广泛应用,现代战争形态演变不断突破,向着机械 化、信息化、智能化的方向发展。进入 21 世纪,触 屏及语音交互的方式取代了烦琐复杂的硬件按钮操 作,更为清晰的数字化屏幕也为信息显示提供了更大 的发展空间。第 4 代新型战斗机的机载设备通过更 大、更清晰的数字化屏幕呈现出更加多样的信息内 容。这一时期的人机交互主要通过数字屏幕进行信息 输出,通过语音、触摸屏和简洁的按键等多通道进行 信息输入。未来飞行员头盔的发展趋势是研制功能强 大、集综合性防护于一体的头盔系统,全息投影技术 也会逐渐发展成熟并应用于头盔显示器中 [6] 。历代战 机座舱显控界面见图 1 。 对战机座舱显控系统的发展,各领域的研究人员 针对人因工效、人机交互、座舱显示技术、人机协同 等方面进行了一系列研究。总结 20 世纪 80 年代至今具 有代表性的人物及研究成果,其研究成果引用量较高, 为座舱显控发展提供了理论依据或技术支撑,见表 1 。 军事技术的发展促使战场环境复杂性的大幅提 升,如 F–35 的大屏幕显示器将远不能满足飞行员获 取信息数据流的显示需求,而未来战斗机为了隐身, 会减小座舱空间,进而缩小座舱显示面积 [25] 。座舱内 的系统控制器将尽可能简化,除了保留一些控制飞行 的基本操作杆和少数与安全相关的控制器,其余的操
手动培训老师/手工艺教练;根据定义的工作角色,指示学生/职业培训机构的各自交易。授予使用相关行业和相关主题工具和设备的理论说明。展示了与研讨会贸易有关的过程和运营;监督,评估和评估学生的实际工作。确保商店中设备和工具的可用性和正确运行。拖拉机机械师;通过各种机械工艺进行农业,建构和其他重型职责的维修和大修拖拉机。检查并驱动汽车在道路上或以固定位置运行的发动机来诊断麻烦和缺陷。根据缺陷的性质拆除部分或完整的发动机或单位。维修或替换有缺陷的零件,通过必要的进一步工具将其重新组装为规定的设置,清除,时间和调整,并确保拟合的准确性。在车辆底盘上牢固地安装组装或维修的发动机,并连接油和燃油管线,控件和其他配件。启动发动机,并观察到任何异常噪音和敲击的性能。调整化油器,燃油泵(用于汽油发动机的化油器和柴油发动机的燃油泵),在敲击和阀之间设置清除,调音发动机,调整制动器,进行刹车,进行电气连接并执行其他任务以确保性能。可以修理和大修电动机,燃油泵,化油器等发动机。可能会焊接烧烤或焊接零件。并被指定为机械师,农业机器。可以修复其他农业机械,用于耕作,平整,收获等。拖拉机操作员,农场;运营和服务农场拖拉机具有不同的耕作,痛苦,收获和其他农业业务的附件。检查拖拉机的不同部分,以确保其处于适当的工作状态。收集,附加和调整拖拉机不同操作所需的特殊设备。用燃料喂食拖拉机,并将其划为土地以耕作。启动拖拉机,并根据土壤和工作的性质以调节速度将其驱动。控制不同附件的操作,包括根据需要操作杆和踏板对车轮转动的操作。在需要时拖着拖车,上面放着农作物和其他材料。清洁和油机。将拖拉机和其他工具保持在良好的工作状态,并保留燃油消耗的记录。可能会监督帮助者的工作。可以检测机械缺陷并进行较小的维修。参考NCO 2015: