尽管异步计算机操作的研究并非 AFT1 计划的主要目标,但研究异步计算机操作已成为一项主要活动。异步架构概念的初衷是提高 EM1 免疫力和整个系统的容错能力。人们认为,随着设计的成熟,对异步操作(可测试性、数据一致性和不确定操作)的担忧将得到缓解。在设计和鉴定 DFCS 方面投入了大量工程努力,并且对异步计算机操作有了更多的了解。尽管在鉴定过程中投入了大量精力和改进,但对可测试性的担忧仍然存在,因为在飞行测试中发生了与异步操作相关的异常。异步操作,加上解耦控制和双重故障/操作能力的复杂性,导致设计任务增加、鉴定期延长和可测试性边际降低。在扩展包络线后,对 DFCS 的任务性能进行飞行测试评估未发现任何与异步操作相关的新异常。
第1节。目的。核能对美国国家安全至关重要。这就是为什么我采取了一系列行动来促进其发展并促进其使用。2017年6月29日,我宣布了一项旨在恢复和扩展核能部门的倡议,并指导对美国核能政策进行完整的审查,以帮助寻找新的方法来振兴这一关键能源。2019年7月12日,我签署了一份总统备忘录,题为“铀进口对国家安全和美国核燃料工作组的建立的影响”,目的是检查当前的国内核燃料生产状态并振兴核燃料供应链,与美国国家安全和非批准目标一致。2019年8月20日,我签署了《国家安全总统备忘录》,题为“含有太空核系统的航天器”,呼吁开发和使用太空核系统来启用或增强太空勘探和操作能力。
摘要 - 空中车辆的广泛采用,包括无人机和无人机,为监视,物流和灾难响应等领域带来了重大进步。尽管有这些好处,但它们增加的使用却构成了实时检测和分类的实质性挑战,尤其是在精确性和可伸缩性必不可少的多级场景中。本文提出了一个基于Yolov11的高性能检测框架,该框架专门针对识别机载汽车量身定制。Yolov11整合了创新功能,例如锚定检测和增强注意力机制,以提供卓越的准确性和速度。在全面的机载车辆数据集上测试了所提出的框架,该数据集具有不同的条件,包括高度,遮挡和环境因素的变化。实验结果表明,微调的Yolov11模型超过了现有模型的性能。此外,它的实时操作能力使其非常适合空中交通管理和安全监控等关键应用程序。
I.简介国家航空航天局(NASA)对通过Artemis计划具有表面操作能力来开发永久性月球人类存在[1,2]。这些任务将跨越多个阶段,作为NASAS框架的一部分,以建立增强复杂性的灵活,可重复使用和可持续的基础设施[3]。Artemis任务中的要求,例如网关,包括独立于地面操作的自动操作的能力[4]。对自治的需求是由在沟通延迟和损失期间提高可靠性的需求所驱动的。类似的要求可能适用于Artemis Lunar大本营。对于基于月球的任务,前哨基地将需要能够自动操作,并通过基于地面的任务控制的最低互动和通信。电力系统是需要自动操作的基于月球的子系统之一[5]。电力/能源管理系统的所有方面都需要包括:发电系统,能够支撑Eclipse乘坐循环的能源存储系统和分配系统
抽象纠缠是不同量子信息处理任务的关键资源。传统研究集中于两分或多部分量子状态的纠缠,但最近的工作将场景扩展到了量子通道的纠缠,这是通道纠缠操作能力的操作量化。基于最近提出的渠道纠缠框架框架,在这里我们研究了资源检测的进一步任务 - 见证了量子通道的纠缠。我们首先介绍一般框架,并展示通道纠缠检测如何与通道的Choi状态相关,从而通过常规状态纠缠检测方法启用了通道纠缠检测。我们还考虑了多部分量子通道的纠缠,并使用稳定器形式主义来构建由受控的Z大门组成的电路的纠缠证人。我们研究了提出的检测方法的有效性,并比较了它们的多个典型渠道的性能。我们的作品为通道纠缠的系统理论研究铺平了道路,并实用了嘈杂的中间尺度量子设备的基准测试。
1。速度:我们将采用,适应和克服。我们将提高我们的数字操作能力,以便在竞争对手的周期内进行创新和适应。目标不是孤立地提供特定能力的速度,而是创建一种文化和过程,以促进一般的新功能的快速整合和部署。我们将通过减少从测试到操作的开发周期所需的时间来做到这一点,并将重点转移到提高生存能力和致命性。2。决策权:集中执行速度很慢。我们将创建一个组织和支持基础架构,以最大程度地提高最小,最低或最小制的当局的明确意图和分散执行。在可能的情况下,决策权和其他当局将与执行实际工作的组织一起居住。的监督将通过清楚地传达意图和最小可能的约束来实现。3。标准:共同做通常做的事情。,我们将使用标准过程和互操作性来最大化速度和分散执行。我们不会重塑解决常见问题的解决方案。
该博士职位将集中于研究实现机器人系统的研究,这些机器人系统大多以无监督的方式表征和监测海洋环境。自主系统可以在海洋中进行具有成本效益的广泛数据收集,监视和检查,并为执行持续操作的可能性较少,而对人类运营商的依赖较少。这些属性使自主系统对于执行操作以探索,映射和监视具有挑战性的海洋环境的机器人组织是可取的。但是,在非结构化和苛刻的海洋中,成功的任务需要通过优化的观察平台系统和监督风险控制来提高安全性,智能和操作能力,该操作是在保障项目中解决的(“智能自治系统,用于保护海上的保护操作和基础设施””。该立场对正在进行的项目保障和CARO(“自动机器人操作中心海底”)中的研究补充,这些研究正在开发类似的功能,重点是海底基础架构。具体来说,该职位将解决这些领域的一个或多个:
欧洲三方小组 (ETG) (ESA – EC – EUROCONTROL) 正在通过 EGNOS 项目实施欧洲对全球导航卫星系统 (GNSS-1) 的贡献,该系统将为航空、海上和陆地移动全欧洲网络应用提供和保证导航信号。欧洲航天局代表该三方小组负责 EGNOS 系统的高级操作能力 (AOC) 的系统设计、开发和技术验证。技术验证将于 2004 年初完成,以便 EGNOS 信号在 2004 年投入使用。EGNOS 将显著改善 GPS 服务,包括精度(从 20 米到 3-5 米)、服务保证(通过 Integrity 信号)和可用性(通过额外的测距信号)。它将在 GPS L1 频率上运行,因此可以通过标准 GPS 前端接收。 EGNOS 是三种基于卫星的增强服务 (SBAS) 之一,另外两种是美国的 WAAS 和日本的 MSAS。EGNOS 的覆盖范围将首先是 ECAC(欧洲民航会议)地区,以后可能会扩展到其他地区,例如非洲、东方国家和俄罗斯。EGNOS 将与 GPS 和 GLONASS 相结合,满足欧洲地区陆地、海上和航空运输方式的许多当前定位、速度和计时要求。EGNOS 是欧洲卫星导航的第一步
MSTS劳动力保持执行老化/生产科学实验所需的操作能力,以提供与提高预测能力,评估当前库存并根据里程碑时间表相关的数据相关的数据。显着的贡献包括同时对三个亚临界实验(SCE)系列的支持,并成功执行了SCE。MSTS通过成功执行旨在确定propenium Material Dynamic属性响应的实验来实现库存做出了宝贵的贡献,以支持W87-1修改计划和硬件开发支持以满足W88 ALT 370生产需求的PIT认证。MSTS与Los Alamos国家实验室(LANL)合作,进行了两个高爆炸性实验系列,以评估潜在的碎片化模式和材料性能,以评估和证明B61的可靠性和B61-12的发展。MSTS通过设计,开发和测试尖端诊断和实验平台的设计,开发和测试,以实现核安全企业(NSE)(NSE)的武器性能评估,包括诊断和武器绩效评估,包括诊断和组件特征,以支持两个点火实验。
6与先前的估计相比,促使LNG生产能力增加的主要因素是更好地理解各种气体组成的液化过程关键组成部分的效率和操作能力,并通过习惯的设计进度和高级模拟(静态和动态)获得了习惯。例如,预期的气体成分比以前预期的要瘦,这促进了更高的功率需求效率(每吨液化天然气千瓦时)。此外,在设计条件下,液化列车中的31兆瓦混合制冷剂压缩机电动机将以不足的容量运行,在充分动力时,额外的保证金超过了保证的LNG生产能力。一起,这些因素表明,在最佳条件下,包括最佳的环境温度和维护最低的年限,该项目的液化液液生产能力将比以前估计的更大。plaquemines LNG预计,峰值水平上的液化天然气产量增加不会改变其先前审查和批准的危害分析的结论或结果,或者以其他方式对其符合适用安全要求的不利影响。plaquemines lng预计这些问题将成为FERC审查的主题,即提议的液化峰值能力提高。
