近年来,随着机器人技术的发展,医疗保健行业一直在取得显着进步[1],[2]。由于Covid-19引起的大流行,使用机器人技术的医疗程序的自动化变得至关重要[3],[4]。机器人正在逐步用于包括手术[5],康复[6],诊断[7]和药物输送[8]在内的广泛任务[8],提供精度,效率和远程操作能力[9]。现代机器人技术具有使用机器人操纵器[10]进行医学检查程序的巨大潜力[10],这些机器人使用各种末端效应子在特定任务中提供其他功能。如今,机器人臂成为医学研究小组的主要重点[11]。 机器人操纵器具有轻巧的重新配置手臂设计,高精度执行器和运动控制系统。 这些机器人用于需要高度精确和质量的任务性能的医学场景,例如组织缝合[12],微创手术[13],[14]和超声检查[15]。如今,机器人臂成为医学研究小组的主要重点[11]。机器人操纵器具有轻巧的重新配置手臂设计,高精度执行器和运动控制系统。这些机器人用于需要高度精确和质量的任务性能的医学场景,例如组织缝合[12],微创手术[13],[14]和超声检查[15]。
基于性能的导航 (PBN) 概念规定,飞机 RNAV 和 RNP 系统性能要求应从准确性、完整性、连续性和功能性方面进行定义,这些是特定空域概念背景下拟议运营所必需的。性能要求在导航规范中确定,导航规范还确定了可用于满足性能要求的导航传感器和设备的选择。这些导航规范的定义非常详细,可通过为各国和运营商提供具体的实施指导来促进全球协调。本手册包含非常广泛的信息、指导和其他考虑因素,适用于选择实施 PBN 应用的利益相关者。其中包括对 PBN 概念的解释、PBN 应用的实施指导、各国和服务提供商的考虑因素以及飞机和运营商的指导/要求。在 PBN 下,通用导航要求是根据运营要求定义的。然后,运营商评估可用的技术和导航服务选项,这些选项可以满足要求。只要 RNAV 或 RNP 系统提供预期的性能,技术就可以随着时间的推移而发展,而无需审查操作本身。在空域概念中,PBN 要求将受到通信、空中交通服务 (ATS) 监视和空中交通管理 (ATM) 服务、NAVAID 基础设施以及满足 ATM 应用所需的功能和操作能力的影响。PBN 要求还取决于有哪些可逆的常规导航技术可用,以及需要多大程度的冗余来确保功能的充分连续性。
实践技能型教育需要模范的面对面操作教学,而VR可以增强在线远程学习,促进“面对面”教学的替代形式,从而改善师生沟通和学习者自我效能。它也是面对面教学的有用替代品,并且对学习效果有积极的影响。在本研究中,采用了混合方法,该方法采用了以下方法:定量和定性测量相结合、文献收集、案例和比较分析,以及使用“你,书法家”作为调查工具的VR教学。选择了美术专业的老师和学生,然后他们使用基于VR的教育性书法游戏应用程序进行教学活动。我们研究了虚拟时间、空间和技术可用性对学习者的理解、想象力和互动性在VR教育中的影响,然后我们通过学习者的反馈评估了积极影响。我们使用的研究工具包括理解力、想象力以及反馈动机如何与有效学习相结合;我们还进行了中国书法表现测试。使用SPSS统计分析软件进行相关统计处理,α设置为0.05。本研究结果表明,VR时空中的中国书法学习影响学生的理解力和想象力,但对操作能力没有影响。根据我们的研究,传统和现代教学方法的一个根本区别在于转向在教育中使用VR(和互联网)。因此,本研究的重点是了解远程学习对实践技能的影响,并研究这些影响,以形成一种有效的VR在教育中的应用方法。
新型植物育种技术 (NPBT) 旨在突破果树品种的传统育种限制,以获得感官性状改良、抗生物和非生物胁迫的新品种,并通过(克隆)选择保持数百年来的果实品质。了解控制特定性状的基因对于 NPBT 的使用至关重要,例如基因组编辑和同源杂交。在研究包括柑橘在内的果树品种的国际科学界框架内,NPBT 主要用于应对病原体威胁。柑橘可以利用 NPBT,因为它具有复杂的物种生物学(无籽、无融合生殖、高杂合性和长幼期)和体外操作能力。据我们所知,通过转基因对柑橘进行基因组编辑已成功利用抗性基因 CsLOB1 在甜橙和葡萄柚中诱导出对柑橘细菌性溃疡病的抗性。未来,NPBT 还将用于改善果实性状,使其更健康。应用 NPBT 后植物的再生是一个瓶颈,因此有必要优化当前协议的效率。我们将讨论使用来自幼小的离体植株和成熟植株的外植体的优缺点。本综述中讨论的其他主要问题与对无标记系统的要求以及缩短漫长的幼苗期有关。本综述旨在总结文献中适用于柑橘的方法和途径,重点关注使用 NPBT 之前观察到的原则。
变异量子算法(VQA)被认为是嘈杂的中间尺度量子(NISQ)设备的有用应用。通常,在VQA中,参数化的ANSATZ电路用于生成试验波函数,并且对参数进行了优化以最大程度地减少成本函数。另一方面,已经研究了盲量量计算(BQC),以便通过使用云网络为量子算法提供安全性。执行量子操作能力有限的客户端希望能够访问服务器的量子计算机,并且BQC允许客户端使用服务器的计算机,而不会泄漏客户端的信息(例如输入,运行量子算法和输出)到服务器。但是,BQC设计用于容差量子计算,这需要许多辅助量子位,这可能不适合NISQ设备。在这里,我们提出了一种有效的方法,可以为客户端提供保证安全性的NISQ计算。在我们的体系结构中,仅需要N +1量子位,假设服务器已知Ansatzes的形式,其中N表示原始NISQ算法中必要的量子数。客户端仅在从服务器发送的辅助量子位上执行单量测量,并且测量角可以指定NISQ算法的ANSATZES的参数。无信号原则可以保证客户端选择的参数或算法的输出都不会泄漏到服务器。这项工作为NISQ设备的新应用程序铺平了道路。
• 双层加固轮辋车轮。Prowler 的超强双层加固轮辋车轮设计用于在最苛刻的越野和崎岖地形条件下与轮胎配合使用,不会凹陷、弯曲、扭曲或断裂。• 全覆盖防滑板保护。Prowler 的重型底盘防滑板系统可以在单个接触点上支撑整个车辆。这意味着,如果“高居中”,车辆只需要在所有车轮驱动锁定的情况下摇动即可拉出“挂断”点。• 粉末涂层表面处理。所有 Prowler 表面均为工业粉末涂层,而非油漆,经久耐用。• 易于维护和后勤支持。Prowler 平台设计使所有日常服务和维护点都易于维修,无需特殊工具、设备或拆卸。全球经销商均提供主要发动机和传动系统零件和服务。• 完全符合 MIL-STD-882D 系统安全的范围和意图。在 Prowler 平台的整个生命周期中,在潜在任务要求的约束范围内,有效的操作能力和可接受的事故风险评估一直是其设计和发展的关键因素。• 主要附件选项。除了上面提到的所有主要元素(以及随附规格中详细说明的元素)之外,几个重要的平台附件选项包括: o 24 VDC 辅助电源系统。o 扩展范围超重型悬架。o 高性能引擎增强功能。o 动力转向。o 使用相同轮毂凸耳进行车轮到履带的转换。
• 双层加固轮辋车轮。Prowler 的超强双层加固轮辋车轮设计用于在最苛刻的越野和崎岖地形条件下与轮胎配合使用,不会凹陷、弯曲、扭曲或断裂。• 全覆盖防滑板保护。Prowler 的重型底盘防滑板系统可以在单个接触点上支撑整个车辆。这意味着,如果“高居中”,车辆只需要在所有车轮驱动锁定的情况下摇动即可拉出“挂断”点。• 粉末涂层表面处理。所有 Prowler 表面均为工业粉末涂层,而非油漆,经久耐用。• 易于维护和后勤支持。Prowler 平台设计使所有日常服务和维护点都易于维修,无需特殊工具、设备或拆卸。全球经销商均提供主要发动机和传动系统零件和服务。• 完全符合 MIL-STD-882D 系统安全的范围和意图。在 Prowler 平台的整个生命周期中,在潜在任务要求的约束范围内,有效的操作能力和可接受的事故风险评估一直是其设计和发展的关键因素。• 主要附件选项。除了上面提到的所有主要元素(以及随附规格中详细说明的元素)之外,几个重要的平台附件选项包括: o 24 VDC 辅助电源系统。o 扩展范围超重型悬架。o 高性能引擎增强功能。o 动力转向。o 使用相同轮毂凸耳进行车轮到履带的转换。
小型太空机器人有可能通过以更短的时间和更低的成本促进基础设施的在轨组装,从而彻底改变太空探索。如果这样的系统还能够执行在轨维修任务,那么它们的商业吸引力将进一步提高,这符合当前限制太空垃圾和延长已在轨卫星寿命的动力。虽然成功演示了有限数量的能够在轨道上操作的技术,但这些系统仍然很大且是定制的。最近小型卫星技术的激增正在改变太空经济,在不久的将来,缩小太空机器人的尺寸可能成为一种可行的选择,具有许多好处。这一行业范围内的转变意味着一些用于缩小尺寸的太空机器人的技术,例如电源和通信子系统,现在已经存在。然而,在缩小尺寸的太空机器人能够执行有用的任务之前,仍需要克服动态和控制问题。本文首先概述了这些问题,然后分析了缩小系统尺寸对其操作能力的影响。因此,我们提出了最小的可控系统,以便利用现有技术实现小型空间机器人的优势。本文讨论了基础航天器和机械手的尺寸。所提出的设计包括一个安装在 12U 尺寸卫星上的 3 连杆、6 自由度机器人机械手。我们通过模拟评估了这种 12U 空间机器人的可行性,本文提供的深入结果支持了小型空间机器人是可行在轨操作解决方案的假设。2020 COSPAR。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
$B Billions of Dollars $K Thousands of Dollars $M Millions of Dollars ACAT Acquisition Category Acq O&M Acquisition-Related Operations and Maintenance ADM Acquisition Decision Memorandum APA Additional Performance Attribute APB Acquisition Program Baseline APPN Appropriation APUC Average Procurement Unit Cost BA Budget Authority or Budget Activity Blk Block BY Base Year CAE Component Acquisition Executive CAPE Cost Assessment and Program Evaluation CARD Cost Analysis Requirements Description CCE Component Cost Estimate CCP Component Cost Position CDD Capability Development Document CLIN Contract Line Item Number CPD Capability Production Document CY Calendar Year or Constant Year DAB Defense Acquisition Board DAE Defense Acquisition Executive DAES Defense Acquisition Executive Summary DAVE Defense Acquisition Visibility Environment DoD Department of Defense DSN Defense Switched Network EMD Engineering and Manufacturing Development EVM Earned Value Management FD Full Deployment FDD Full-Deployment Decision FMS Foreign Military Sales FOC全部运营能力FRP全利率生产财政年度FYDP未来年国防计划ICD初始能力文档ICE Independent Independent Independe Indiped Incement Inc增量IOC IOC初始操作能力IT INFORMITION IT信息技术JROC联合要求监督委员会KPP关键绩效ksa键参数KSA密钥系统属性
航空医学奖学金麦吉尔大学项目摘要航空医学是当今世界发展最迅速、最令人兴奋的临床实践领域之一。随着全球旅行变得越来越方便和流行,遣返病人和受伤者的需求也越来越大。航空公司、国际组织、研究机构、医院和政府也需要航空医疗顾问。卫生专业人员可以通过参与空中救护行动发挥重要作用,他们可以从事非常不同的活动领域;从将危重病人从偏远国家运送到当地搜救服务。这一实践领域所需的临床和操作能力是多方面的,要求很高。当需要乘客医疗许可、乘客在机上生病或需要就机上机组人员的健康问题进行咨询时,他们也可以成为航空公司的重要资源。航空学是另一个健康专业人士可以带来重要专业知识的领域。他们将就飞机上或试飞阶段的乘客安全提供建议。他们将与航空工程师合作,进行空气循环、舒适座椅设计和客舱设计,以防止长途飞行相关的健康问题。他们将分析驾驶舱、厨房和客舱的人体工程学并提出建议。麦吉尔航空医学奖学金分为几门课程,在蒙特利尔和省外参加。奖学金涵盖航空医学的不同方面,包括: − 飞行环境 − 遣返和医疗后送 − 民航医学研究生证书 (PGCertCAvMed) − 事故调查中的人为因素 − 客舱安全中的人为因素 − 低压和高压医学 − 商业航空 奖学金候选人必须进入 R3 住院医师级别或更高级别。学员将学习地面和空中的核心知识和技术技能!
