AD 适航指令 ADAHRS 空中数据 姿态航向参考系统 AFT 后方(前方的反义词) AGL 地面以上 AIG 航空器事故和事故征候调查 ALAR 进近和着陆事故减少 AMSL 平均海平面以上 AMT 航空器维修技师 ARP 机场参考点 ATF 航空涡轮燃料 ATC 空中交通管制员 ATPL 航线运输飞行员执照 ATZ 机场交通区 AUW 全部重量 BR 雾 B. S. 比克拉姆桑巴特 C of A 适航证书 CAAN 尼泊尔民航局 CFIT 可控飞行撞地 CG 重心 CPL 商业飞行员执照 CRS 放行证书 CTR 控制区 CVR 驾驶舱语音记录器 DCP 指定检查飞行员 DD 延期缺陷 DFDR 数字飞行数据记录器 DI 每日检查 EGPWS 增强型近地警告系统 ELT 紧急定位发射器 F/O 副驾驶 FAA 联邦航空管理局 FDR 飞行数据记录器 FG雾 FMS 飞行管理系统 FOM 飞行操作手册 FOR 飞行操作要求 Ft/min 英尺每分钟 FWD 前向 GPS 全球定位系统 GPWS 近地警告系统 HF 高频
本报告概述了电动商用车 (ECV) 项目期间开展的工作。该项目于 2012-2016 年期间开展,部分资金来自芬兰技术创新资助机构 Tekes(现为芬兰商业)。该项目汇集了来自工业和学术界的多个合作伙伴,共同资助研究和开发。研究方包括芬兰 VTT 技术研究中心有限公司、阿尔托大学、拉彭兰塔理工大学、坦佩雷理工大学、大都会应用科学大学、瓦萨大学和罗瓦涅米应用科学大学。除其他关键信息外,还可以从项目网页 www.ecv.fi [2019 年 3 月 27 日提交] 找到合作伙伴的完整列表。 ECV 的最后一次研讨会于 2016 年 5 月举行。为期两天的活动的第一天总结了国家 ECV 项目开展的工作,而第二天则通过第二届北欧电动巴士计划致力于更加国际化的背景。研讨会参与者总数约为 200 人。本报告汇集了研讨会上介绍的工作以及整个项目的其他贡献。它涉及电动商用车的所有重要方面,从技术到可操作性和操作要求以及环境。
混合或完全基于云的企业体系结构和服务可以显着改变许可实体的风险概况。需要有效管理和减轻对这种技术安排的依赖而产生的风险。必须有有效而清晰的ICT治理框架。,它要求持有许可证持有人的管理机构以及任何寻求授权的实体,以确保对依赖外包服务提供商的依赖程度有清晰的认识和理解。业务连续性和应急计划还需要涵盖外包安排的所有方面。MFSA认识到授权公司对推动关键或重要职能的技术安排的依赖,这可能涉及多个远程第三方服务提供商,这些服务提供商直接签约和/或分包。它也认识到传统企业外围的模糊 - 不仅在身体上而且在逻辑上也是如此。这不仅是由基于云的工作负载和地理分散的数据存储或服务带来的,而且还归因于公司需要适应访问计算和数据资产的多方面操作要求。后者包括无线和现场员工,包括外包提供商和业务合作伙伴的员工,手机中的服务和资源的访问以及多个上游和下游集成点。这在网络安全暴露方面提出了具有挑战性的弹性攻击表面,因此,在战略和运营计划水平上需要最大的关注,并结合
摘要 - 该论文研究了操作技术,以通过派遣网格形成(GFM)逆变器来实现无缝(平滑)微电网(MG)过渡。在传统方法中,GFM逆变器必须在mg过渡操作期间在网格之后(GFL)和GFM控制模式之间切换。今天的逆变器技术允许GFM逆变器始终以GFM控制模式运行,因此值得探索如何使用它们实现光滑的MG过渡操作。本文提出了三种操作技术:在GFL和GFM控制之间切换的传统方案;一个新的计划,以一致的GFM控制并在岛屿操作前转移下垂拦截;以及一致的GFM控制并在同步操作之前移动下垂截距的新方案。建立了完整的硬件设置,以比较三种技术并在现实世界应用程序中展示其实现。结果表明,第三种技术优于其他技术并表现出最佳的过渡性能,因为GFM逆变器在过渡操作过程中保持相同的操作点。因此,我们得出的结论是,在过渡操作期间,确保平滑的MG过渡操作要求GFM逆变器(s)保持相同的工作点(V,F,F,P,Q和相位角),此外还可以最大程度地减少常见耦合功率流的点。
1. 本 NPRM 的目的 本 NPRM 邀请就引入 MCAR 172 进行磋商,该法案为马尔代夫共和国的空中交通服务组织提供了监管安全边界。 2. 提案背景 MCAR 172 – 空中交通服务组织认证,规定了在马尔代夫和马累飞行信息区提供空中交通服务的组织的认证和操作要求。此外,MCAR 172 还详细说明了经认证的组织提供空中交通服务的操作和技术标准。MCAR-172 于 2010 年 1 月 1 日生效 3. 主要利益相关方 CAD 将以下各方确定为本 NPRM 中拟议法规修正案的主要利益相关方: MACL 4. 对 NPRM 的意见 4.1 欢迎提交意见 欢迎有兴趣的人士通过提交书面数据、观点或评论来参与拟议规则的制定。在对拟议规则制定采取最终行动之前,将考虑所有意见。 4.2 如何提交意见 可以使用附录 1 中提供的 NPRM 提交表格转发对此提案的评论(最好通过电子邮件)。 NPRM 提交表格也可在 CAD 网站 www.aviainfo.gov.mv 上找到。 意见可通过以下方式发送: 邮寄:马尔代夫共和国民航局 7 楼,P.A Complex Hilaalee Magu,马累 20307 传真:+ 960 3323039 电子邮件:safet
F,正如空军规划人员合乎逻辑地主张的那样,大气层和太空是一个称为航空航天的单一操作连续体,操作要求对技术的不可阻挡的压力最终必须将飞机与太空飞行器结合起来。结合的目的是设计一个有翼的后代,它可以飞入轨道,而不是用大型火箭助推器发射到轨道上,并且可以从传统机场起飞和降落。这种飞行器首次成功进入轨道并返回,将真正标志着人类征服太空的里程碑。“太空飞机”概念有一套令人敬畏的一般要求。它被设想为一种独立的单级飞行器,使用吸气式发动机在大气层中机动,并将自身加速到大约 18,000 英里/小时的卫星速度。它必须携带足够的燃料进入轨道以在太空中进行广泛机动,或者能够在高层大气中绕轨道运行时收集这些燃料。最后,太空飞机必须能够承受再入大气层的高温,在返回地球表面时在大气层中以极高的速度机动,并在任何所需的机场以相对较低的速度在动力下着陆。从军事上讲,太空飞机的吸引力是毋庸置疑的。然而,从技术角度来看,乍一看,它违反了控制飞机、吸气式发动机、助推火箭和再入飞行器设计的许多物理定律。它可以
更改日志修订版Date Description of Changes 01 08 FEB 2023 Added Q&A 1 02 15 MAR 2023 Added Q&A 2 that superseded Q&A 1 03 16 JUN 2023 Added Q&As 3 to 8 04 08 AUG 2023 Added Q&As 9 and 10 05 25 AUG 2023 Added Q&As 11 to 17 06 05 SEP 2023 Amended Q&A 9 and added Q&As 18 to 24 Q1 : Why is the Draft Announcement of机会(AO)更像是提案请求(RFP),而不是典型的开放科学AO?a1:此AO是为了支持操作太空天气任务以及进行研究的调查。因此,它具有RFP和开放科学AO的各个方面。表列表操作要求解决了操作的绩效特征,并且预计不会限制可以为指定工具提出的科学。[由2023年3月15日取代问答2。]Q2:为什么在1级操作参数和目标表中,征集似乎是由仪器要求驱动的,这些表似乎强调了针对重点但开放科学调查的特定空间天气操作?a2:这种FMO征集是针对科学调查的,它使用/包括/包括遥感工具(NASA机遇工具(NIO)),其观察结果补充了托管仪器的守夜空间天气任务的操作观察结果。
量子误差校正1-4通过将多个物理量子器组合到逻辑量子位中,提供了达到实用量子计算的途径,其中添加了更多的量子器,将逻辑错误率指数置于指数抑制。但是,仅当物理错误率低于临界阈值时,这种指数抑制才会发生。在这里,我们在我们最新一代的超导处理器柳树:距离-7代码和与实时解码器集成的距离-7代码和距离-5代码上介绍了两个以下阈值表面代码记忆。将代码距离增加2时,我们较大的量子存储器的逻辑错误率被λ= 2.14±0.02抑制,最终以101 Qubit的距离-7代码为0.143%±0.003%误差误差误差。这种逻辑记忆也超出了盈亏平衡,超过了其最佳物理值的寿命2.4±0.3。实时解码时,我们的系统保持低于阈值的性能,在5到100万个周期的距离时,平均解码器延迟为63微秒,周期时间为1.1微秒。我们还将重复代码运行到距离29,发现逻辑性能受到罕见相关误差事件的限制,大约每小时发生一次或3×10 9周期。我们的结果表明设备性能,如果缩放,则可以实现大规模易于故障量子算法的操作要求。
E. 操作规则 1.遥控飞行员指挥 a. 术语 b.遥控飞行员指挥 c. 飞行员认证要求 d. 遥控飞行员指挥的紧急权力 2.视距避让和能见度要求 a.视线 b.视觉观察员 i.视觉观察员的定义 ii.使用视觉观察员时的操作要求 iii.可选择使用视觉观察员 iv.无需飞行员认证或视觉观察员培训 c. 额外的能见度要求 i. 白天操作 ii.天气/能见度最低值 iii.让行权 d.额外技术/显眼性要求 i. ADS-B、应答器和 TCAS ii.无线电设备 iii.照明 iv.显眼性 3.遏制和失去正面控制 a.密闭作业区域边界 i. 水平边界和移动车辆 ii.垂直边界(最大高度) b. 减轻失去正面控制的风险 i.最大速度 ii.操作多架无人机 iii.微型 UAS iv.飞越人群 v. 飞行前简报 vi.飞行前对操作区域进行评估并确保飞机不会造成不当危险 1.飞行前对操作环境进行评估 2.失去控制时可能造成的不当危险 vii.自动化 viii.其他设备 1.地理围栏
量子纠错 [1–4] 通过将多个物理量子位组合成一个逻辑量子位,为实现实用量子计算提供了一条途径,随着更多量子位的添加,逻辑错误率会呈指数级抑制。然而,只有当物理错误率低于临界阈值时,这种指数级抑制才会发生。在这里,我们在最新一代超导处理器 Willow 上展示了两个低于阈值的表面代码存储器:距离为 7 的代码和集成了实时解码器的距离为 5 的代码。当代码距离增加两倍时,我们更大的量子存储器的逻辑错误率被抑制了 Λ = 2.14 ± 0.02 倍,最终得到一个 101 量子位距离为 7 的代码,每个纠错周期的错误率为 0.143% ± 0.003%。这种逻辑存储器也超出了盈亏平衡点,是其最佳物理量子位的寿命的 2 倍。 4 ± 0 . 3. 我们的系统在实时解码时保持低于阈值的性能,在距离为 5 时实现平均 63 µ s 的解码器延迟,最多可进行一百万次循环,循环时间为 1.1 µ s。我们还运行距离为 29 的重复代码,发现逻辑性能受到每小时约一次或 3 × 10 9 次循环发生的罕见相关错误事件的限制。我们的结果表明,如果扩展,设备性能可以实现大规模容错量子算法的操作要求。