高速喷气式飞机的飞行员需要经过多年的高级训练才能获得出色的操控能力。如果能够将飞行员和其他领域专家的技能、知识和偏好提炼成一个能够捕捉真实操控行为的软件模型,那么这种方法将具有重大的实用价值。这种模型的可扩展性将使其可用于战略规划演习、培训以及其他软件系统的开发和测试。这将使人类驾驶专业知识这一稀缺资源获得更大的回报。这一愿景面临着实际挑战,即准确地获取所需知识以将其编入自动化系统。在许多需要直觉决策和快速运动控制的情况下,专家们一看到良好的操控性就知道,但并不总是能用形式或语言术语表达原因 [1]。∗ 显性知识获取策略也可能非常耗时,任何依赖专家演示的方法也是如此。这促使人们采用一种使用稀疏数据源的基于学习的方法。鉴于透明度对于安全至关重要的航空应用的重要性 [2、3],任何此类方法都必须学习一个可解释(即人类可读和可理解)的专家知识模型,以促进信任和验证。本文提出了一种可能的解决方案。我们使用人工智能强化学习 (RL) 代理来生成模拟飞行轨迹数据集,然后咨询专家以获得对这些轨迹的成对偏好,表明哪一个是针对给定感兴趣任务的首选解决方案。众所周知,成对偏好引出具有稳健性和时效性,并为组合来自多个专家的数据提供了基础,而无需就共同的评分系统达成一致。然后,我们使用统计学习算法以基于规则的树结构形式构建收集到的偏好的可解释解释模型。反过来,该树被用作奖励函数来训练代理生成更高质量的轨迹,并迭代该过程直至收敛。最终结果是两个不同的输出,它们可以形成未来规划、培训和开发软件的宝贵组成部分:
涂装 有超过 65 种高品质真实涂装供您选择,可从 QualityWings 网站免费下载 重绘套件 我们为想要绘制自己涂装的人提供了详细的涂装套件。其中包含许多效果,以确保任何人都能画出好看的涂装!它还包括许多选项图层集,可让您匹配多种不同的航空公司配置。 飞行动力学 每种变体都有自己的飞行动力学,以确保您能真正感受到不同的操控特性。电传飞行控制系统经过高精度模拟,准确反映了真实飞机上的波音 C*U、P-Beta 和螺旋稳定逻辑。此外,倾斜角保护和尾部撞击保护等保护功能可帮助您安全操作飞机。飞行特性已经过现实世界的 787 驾驶员测试。
1. 引言单电子隧穿 (SET) 器件提供了一种操控单个电子并以极高的精度检测这些电子运动的方法。它们对计量和基本常数的潜在影响早在 20 世纪 80 年代该领域的发展中就已被认识到。到 20 世纪 90 年代初,几种 SET 器件已证明能够检测比 e 小得多的电荷并将单个电荷从一个电极转移到另一个电极。在过去几年中,这些器件的性能已提升到基本标准和高精度测量所需的水平:SET 静电计可以在 1 Hz 带宽内检测到 ~ 10 –5 e;电子陷阱可以将单个电荷存储数小时;电子泵可以传输数亿个单个电子,不确定度约为 10 –
R. Dong、Prof. S. Liu、Prof. X. Jiang 哈尔滨工业大学生命科学与技术学院 中国哈尔滨市南岗区益矿路 2 号 150001 电子邮件:shaoqinliu@hit.edu.cn; jiang@sustech.edu.cn 董荣军,杭聪,陈哲,刘晓玲,钟玲,齐建军,黄勇,蒋晓玲教授 南方科技大学生物医学工程系 中国广东省深圳市南山区学院路 1088 号 518055 王林博士,王林教授,陆英教授 中国科学院脑连接组与操控重点实验室,脑认知与脑疾病研究所 中国科学院深圳先进技术研究院 深港脑科学研究院-深圳基础研究中心 深圳 518055,中国 电子邮件:lp.wang@siat.ac.cn; luyi@siat.ac.cn
1 中国科学院神经科学研究所、神经科学国家重点实验室、脑科学与智能技术卓越创新中心,上海;2 中国科学院大学,北京;3 复旦大学类脑智能科学与技术研究所,上海;4 北京大学心理与认知科学学院、行为与心理健康北京市重点实验室、IDG/麦戈文脑研究中心、北大-清华生命科学中心,北京;5 浙江工业大学信息工程学院,杭州;6 深圳市神经精神调控重点实验室和脑科学协同创新中心、广东省脑连接组与行为重点实验室、中国科学院脑连接组与操控重点实验室、脑认知与脑疾病研究所、深圳先进技术研究院、深港脑科学研究院-深圳基础研究机构,深圳
在 PC IV 中,您已经学习了布洛赫方程、拉比振荡和脉冲序列,它们是基于核或电子自旋与无线电波之间的相干相互作用来提取有关物质结构和动力学特性的有用信息的方法。原则上,这些方法可以转移到光谱学领域以达到相同的目的。不幸的是,在光频率下,人们必须处理不同的、更快的松弛过程,这些过程会破坏相干性。例如,在 NMR 中,由于 ν 3 缩放(其中 ν 是发射频率),自发辐射非常慢,以至于它对使自旋系统达到热平衡的贡献可以忽略不计。相反,在光频率下,自发辐射是最重要的退相干源之一。尽管如此,激光源和技术的进步为原子和分子的相干操控提供了大量可能性,如今这些可能性在量子信息科学和飞秒化学等不同领域都有重要应用。
这些人工智能模型经过训练,或者能够对大量生物数据进行有效操控,其进步可能会给人类带来巨大福祉,从加快药物和疫苗设计到提高农作物产量(13)。但与任何强大的新技术一样,这种生物模型也会带来相当大的风险。由于其通用性,能够设计良性病毒载体进行基因治疗的生物模型也可以用来设计一种能够逃避疫苗诱导免疫的更具致病性的病毒(4)。开发人员自愿承诺评估生物模型的潜在危险能力,这很有意义也很重要,但不能孤立存在。我们建议包括美国在内的各国政府通过立法并制定强制性规则,以防止先进的生物模型严重造成大规模危害,例如产生能够引发重大流行病甚至大流行病的新型或增强型病原体。
光学时钟需要更稳定的光学振荡器来加速 SI 秒的重新定义,为计量学带来出色的基础科学,并为基于时钟的大地测量学中的创新传感器提供应用。该项目的总体目标是实现利用量子技术的新一代超稳定光学振荡器。这意味着从量子光学和量子计算到光频率计量领域的理论和实验量子操控知识转移。虽然通过多粒子和光物质相互作用在原子钟和传感器中应用量子测量策略尚处于原理验证阶段,但该项目将实施并进一步开发与计量相关的光学振荡器上的最先进量子测量策略。它将影响冷原子系统和光学设备的计量和传感,以及可扩展量子信息处理和模拟中使用的技术。需要
自 1961 年起,德国采购了 916 架洛克希德 F-104 星式战斗机,其中 292 架坠毁,116 名飞行员丧生。本研究项目的目的是找出这些飞机坠毁的原因,以及星式战斗机坠毁的原因是否与德国其他军用飞机不同。通过审查原始事故文件,分析了 1978 年至 1986 年间发生的 71 起德国 F-104 事故。使用人为因素分析和分类系统 (HFACS) 1 级分析作为方法。结果发现,在审查的德国 F-104 事故中,超过 50% 的事故是由于技术和/或物理环境造成的。样本中超过一半的事故与发动机有关。结论是,F-104 确实比同时期的其他机型更容易发生事故。此外,J-79 发动机被发现是 F-104 安全记录中的一个薄弱环节,而星式战斗机难以操控的特性导致了高水平的基于技能的错误。
声子的探测对于研究共振耦合的磁振子与声子的相互转化至关重要。本文我们报道了通过微聚焦布里渊光散射在 Ni/LiNbO 3 混合异质结构上直接可视化磁振子和声子的共振耦合。表面声子的静态图样源于入射波 𝜓 0 (𝐴 0 , 𝒌, 𝜑 0 ) 与反射波 𝜓 1 (𝐴 1 , −𝒌, 𝜑 1 ) 之间的干涉,由于磁振子-声子耦合,磁场可以调制表面声子的静态图样。通过分析从布里渊光谱中获得的声子信息,可以确定磁振子系统(Ni 薄膜)的性质,例如铁磁共振场和共振线宽。该结果提供了关于耦合磁振子-声子系统中声子操控和检测的空间分辨信息。