摘要。由于介质不均匀性而导致的波(例如光)的散射在物理学中普遍存在,并且被认为对许多应用有害。波前整形技术是一种强大的工具,可以消除散射并通过非均匀介质聚焦光,这对于光学成像、通信、治疗等至关重要。基于散射矩阵 (SM) 的波前整形在处理线性区域中的动态过程中非常有用。然而,在非线性介质中控制光的这种方法的实现仍然是一个挑战,至今尚未被探索。我们报告了一种确定具有二阶非线性的非线性散射介质的 SM 的方法。我们通过实验证明了其在波前控制中的可行性,并通过强散射二次介质实现了非线性信号的聚焦。此外,我们表明该 SM 的统计特性仍然遵循随机矩阵理论。非线性散射介质的散射矩阵方法为非线性信号恢复、非线性成像、微观物体跟踪和复杂环境量子信息处理开辟了道路。
早期生活经历如何塑造人类大脑?这个问题出奇地难以回答,因为它涉及人类发展中个体差异的原因,而不仅仅是相关因素。对这种差异的研究通常是观察性的,因此没有涉及因果关系的问题。相比之下,动物研究通过随机分配到复杂程度低或高的物理环境,证明了环境刺激对大脑结构的因果影响。然而,它们无法告诉我们对人类发展最重要的环境特征:语言刺激和认知刺激。环境在塑造大脑发育中的作用是神经科学的核心问题,而一个重要的悬而未决的问题是环境中人类独有的特征,即语言刺激和认知刺激(Lenroot & Giedd,2011)。虽然大型动物文献表明,更复杂的笼养环境会导致微观和宏观的大脑变化,包括更大的皮层(Diamond,2001),但这种操纵为人类发展中可能最重要的环境差异提供了一个不完整的模型。这些差异包括复杂形式的认知和语言经验的差异。了解经验如何影响人类发展也是社会科学和政策的核心问题。早期经验是否推动了跨代社会经济分层?环境干预能否
脑机接口 (BCI) 是一种通信系统,它从大脑活动获取输入并将其转换为外部设备的输出命令,而无需用户进行身体移动 (Wolpaw 等人,2002)。因此,BCI 可以帮助运动障碍患者通过各种控制范式重新获得与环境沟通和互动的能力。收集用户的大脑活动的方法有很多种,其中脑电图 (EEG) 最受欢迎,因为它是非侵入性的并且具有很高的时间分辨率 (Abiri 等人,2019)。根据从大脑中提取的 EEG 成分,BCI 系统可分为三大范式:P300、稳态视觉诱发电位 (SSVEP) 和运动意象 (Abiri 等人,2019)。 P300 范式依赖于事件相关电位 (ERP) 形式的正偏转,该正偏转在遇到奇异范式中的预期刺激后约 300 毫秒引发 (Mat-tout 等人,2015)。因此,通过比较在一系列刺激呈现中诱发的事件相关电位,P300 BCI 可以识别用户的目标选择。与其他范式相比,P300 范式需要的用户培训较少 (Guger 等人,2009),使其成为设计 BCI 控制的交互式环境的有前途的工具 (Fazel-Rezai 等人,2012)。BCI 控制的智能家居已经使用虚拟现实 (VR) 模拟和物理
据我们所知,这是在 LNOI 平台上首次演示高阶模式通带滤波器。我们的模式滤波器体积小、损耗低、MER 高、功能可扩展,与其他材料平台上报道的器件相比,是一种极具吸引力的选择(详情请参阅支持信息 S5)。此外,我们的器件还可以使用微电子行业开发的成熟的 CMOS 兼容蚀刻工艺来制造,同时保留了基于 LNOI 平台探索高速电光器件和高效光学非线性器件的能力。
摘要 量子操控是一种具有独特非对称性的量子关联,在非对称量子信息任务中具有重要的应用。我们考虑一种新的量子操控场景,其中两量子比特 Werner 态的一半由多个 Alice 依次测量,另一半由多个 Bob 测量。我们发现,当测量设置数 N 从 2 增加到 16 时,可以与单个 Bob 共享操控权的最大 Alice 数量从 2 增加到 5。此外,我们发现一个违反直觉的现象,即对于固定的 N ,最多有 2 个 Alice 可以与 2 个 Bob 共享操控权,而允许 4 个或更多 Alice 与单个 Bob 共享操控权。我们通过计算初始 Werner 态所需的纯度进一步分析了操控共享的稳健性,其下限从 0.503(1) 到 0.979(5) 变化。最后,我们证明了如果采用初始非对称状态或非对称测量,我们的双侧顺序转向共享方案可以用于控制转向能力,甚至转向方向。我们的工作深入了解了转向共享的多样性,并且可以扩展到研究应用顺序模糊测量时的真正多部分量子转向等问题。
2D 过渡金属二硫属化物 (TMDC) 是原子级厚度的半导体,在晶体管和传感器等下一代光电应用方面具有巨大潜力。它们的大表面体积比使其节能,但也对物理化学环境极为敏感。在预测电子行为(例如其能级排列)时必须仔细考虑后者,这最终会影响器件中的电荷载流子注入和传输。这里展示了局部掺杂,从而通过化学工程改造支撑基板的表面来调整单层 TMDC(WSe 2 和 MoS 2)的光电特性。这是通过使用两种不同的自组装单层 (SAM) 图案的微接触印刷来装饰基板来实现的。SAM 具有不同的分子偶极子和介电常数,显著影响 TMDC 的电子和光学特性。通过分析(在各种基底上),可以确认这些影响完全来自 SAM 和 TMDC 之间的相互作用。了解 TMDC 所经历的各种介电环境可以建立电子和光学行为之间的关联。这些变化主要涉及电子带隙宽度的改变,可以使用肖特基-莫特规则计算,并结合 TMDC 周围介质的屏蔽。这些知识可以准确预测单层 TMDC 的(光)电子行为,从而实现先进的设备设计。
图 2. 所提出的光控编码元件的设计和特性。a) 元原子编码元件的详细结构,在 SiO 2 基板上构建了 1 μm 厚的金方块和 1 μm 厚的 GeTe 方块图案。b) 编码元件两种状态的示意图:状态“0”表示 GeTe 的非晶态(绝缘态),状态“1”表示 GeTe 的晶体(导电)态。c) 和 d) 两种状态下编码元件的相应反射特性(c 幅度和 d 相位)。e) GeTe 层表面电阻随温度的变化(双探针测量),显示两种状态下的电特性相差六个数量级以上,并且冷却至室温时晶体状态具有非挥发性行为。 f) 有限元模拟 GeTe 层在具有不同能量密度的 35 纳秒长单脉冲紫外激光照射下的温度上升情况:单脉冲的通量为 90 mJ/cm 2,将使最初为非晶态的 GeTe 的温度升至其结晶温度 ( TC ) 以上,而随后的 190 mJ/cm 2 激光脉冲将使 GeTe 的温度升至其局部熔化温度 TM 以上,并将材料熔化淬火回非晶态。下图是拟议的 1 比特元原子的配置和示意图
摘要 扩大可用于蛋白质可视化和操作的试剂库将有助于了解其功能。与目标蛋白质相连并被现有结合剂(如纳米抗体)识别的短表位标签有助于进行蛋白质研究,因为无需分离针对它们的新抗体。纳米抗体比传统抗体有几个优势,因为它们可以表达并用作体内蛋白质可视化和操作的工具。在这里,我们描述了两个短(<15aa)纳米标签表位 127D01 和 VHH05,以及它们相应的高亲和力纳米抗体。我们展示了它们在果蝇体内蛋白质检测和重新定位、直接和间接免疫荧光、免疫印迹和免疫沉淀中的应用。我们进一步表明,CRISPR 介导的基因靶向提供了一种用纳米标签标记内源性蛋白质的直接方法。纳米标签的单个副本,无论其位置如何,都足以进行检测。这种多功能且经过验证的标签和纳米抗体工具箱将作为广泛应用的资源,包括果蝇及其他物种的功能研究。
数字微流控芯片是一种液体处理器,利用电润湿效应移动、合并和分裂液滴,从而进行生化分析。然而,一旦包含几十个以上的电极,硬接线电润湿芯片就会变得繁琐。单面连续光电润湿,其中无特征半导体膜的电润湿效应由光图案控制,是解决这一硬接线瓶颈的有希望的解决方案,但到目前为止,二维液滴操控仍然很困难。在这里,我们演示了通过使用 Z 形光图案沿任意方向操纵液滴,这些光图案将电场旋转任意角度。我们提供了一个驱动液滴朝不同方向移动的理论模型。它通过 Comsol 模拟和实验进行了验证。凹槽宽度的优化使 y 方向的驱动电压大大增加。该芯片可以以 4.86 mm/s 的最大速度沿 y 方向移动染色水滴。这种多维液滴驱动为单侧连续光电润湿开辟了新的可能性,例如合并不在一条线上的液滴、高效液滴混合以及绕过液滴以避免聚结。