这项工作得到了国家科学技术重大项目(2022ZD0114900)的部分支持Horizon Europe框架通过可触及的项目(101092518)。(Zihang Zhao和Yuyang li对这项工作也同样贡献。相应的作者:Lecheng Ruan和Yixin Zhu。)Zihang Zhao和Yixin Zhu曾与中国北京大学100871北京大学的人工智能研究所一起(电子邮件:zhaozihang@stu@stu.pku.edu.edu.cn; yixin.zhu@pku.edu.edu.cn)。Yuyang Li和Zhenghao Qi曾在中国北京大学,北京大学,北京大学和北京通用人工智能研究所,中国北京100080,中国以及自动化部,北京大学,北京大学,北京大学,北京大学,北京大学,北京100084,中国(电子邮件): {liyuyang20,qi-zh21}@mails.tsinghua.edu.cn)。Wanlin Li与中国北京100080的北京通用人工智能研究所合作(电子邮件:liwanlin@bigai.ai)。Lecheng Ruan曾在中国北京100871的北京大学工程学院以及中国武汉430075的PKU-Wuhan人工智能研究所(Ruanlecheng@ucucla.edu)任职。Zihang Zhao和Lecheng Ruan在这项工作中也部分地在北京通用人工智能研究所中。数字对象标识符(DOI):请参阅此页面的顶部。Kaspar Althoefer曾在英国伦敦皇后大学伦敦皇后大学工程与材料科学学院内的高级机器人中心 @皇后玛丽(Queen Mary),伦敦E1 4NS(电子邮件:k.althoefer@qmul.ac.uk)。
我在司法部任职期间,曾参与调查和起诉涉及全国大量公共和私人工程项目的串标阴谋,包括道路、桥梁和核电设施。这些阴谋增加了纳税人和消费者承担的项目成本,甚至间接威胁到公共安全。在我经手的一个案件中,一名串标同谋被要求检查另一名同谋的工作,因为当时只有极少数公司从事核安全壳建造业务。一家拥有核电站的电力公司委托了这项检查,因为担心其核电站的工作不符合安全规范。通过成功起诉同谋,我们不仅揭露和制止了串标阴谋,还警告这家电力公司,他们委托的安全检查不可信。
摘要 - 与环境对象的互动可以引起外部感受和本体感受信号的重大变化。然而,水下软操作器中外部感受传感器的部署遇到了许多挑战和约束,从而对其感知能力施加了限制。在本文中,我们提出了一种基于学习的新型表达方法,该方法利用内部本体感受信号并利用软执行器网络(SAN)的原理。def> div>趋势倾向于通过水下软操作器中的sans传播,并且可以通过本体感受传感器检测到。我们从传感器信号中提取特征,并开发完全连接的神经网(FCNN)基于分类器以确定碰撞位置。我们已经构建了一个培训数据集和一个独立的验证数据集,目的是培训和验证分类器。使用独立的验证数据集以97.11%的精度识别出碰撞位置的实验结果,该碰撞位置在水下软机器人的感知和控制范围内表现出潜在的应用。
摘要 — 最近,在多模态大型语言模型 (MLLM) 进步的推动下,视觉语言动作模型 (VLAM) 被提出以在机器人操作任务的开放词汇场景中实现更好的性能。由于操作任务涉及与物理世界的直接交互,因此确保此任务执行过程中的鲁棒性和安全性始终是一个非常关键的问题。在本文中,通过综合当前对 MLLM 的安全性研究以及物理世界中操作任务的具体应用场景,我们全面评估了面对潜在物理威胁的 VLAM。具体而言,我们提出了物理脆弱性评估管道 (PVEP),它可以结合尽可能多的视觉模态物理威胁来评估 VLAM 的物理鲁棒性。PVEP 中的物理威胁具体包括分布外攻击、基于排版的视觉提示和对抗性补丁攻击。通过比较 VLAM 在受到攻击前后的性能波动,我们提供了关于 VLAM 如何应对不同物理安全威胁的通用分析。我们的项目页面位于此链接
本文提出了一种针对移动操纵器系统(MMS)的新控制策略,该策略集成了基于图像的视觉伺服(IBVS),以解决操作限制和安全限制。基于控制屏障功能(CBF)的概念的拟议方法提供了一种解决方案,以应对各种操作挑战,包括可见性约束,操纵器关节限制,预定义的系统速度界限和系统动态不确定性。提出的控制策略是两层结构,其中第一级CBF-IBVS控制器计算控制命令,并考虑到视野(FOV)约束。通过利用空空间技术,这些命令被转移到MMS的联合配置,同时考虑系统操作限制。随后在第二级中,用于整个MMS使用的CBF速度控制器对关节级的命令进行跟踪,以确保遵守预定义的系统的速度限制以及整个组合系统动力学的安全性。拟议的控制策略提供了出色的瞬态和稳态响应,并提高了对干扰和建模不确定性的弹性。此外,由于其计算复杂性较低,因此可以在板载计算系统上轻松实现,从而促进实时操作。通过仿真结果说明了拟议策略的有效性,与常规IBVS方法相比,该结果揭示了增强的性能和系统安全性。结果表明,所提出的方法可有效解决移动操纵器系统的具有挑战性的操作限制和安全限制,使其适合于实际应用。
摘要:了解机器人必须在给定开放式任务中的非结构化环境中操纵对象。但是,现有的视觉负担预测方法通常仅在一组预定义的任务上手动注释的数据或条件。我们介绍了无监督的负担蒸馏(UAD),这是一种将负担知识从基础模型提炼到任务条件的辅助模型的方法,而无需任何手动注释。通过利用大型视觉模型和视觉模型的互补优势,UAD自动注释了一个具有详细的<指令,Visual Profiseance> Pairs的大规模数据集。仅在冷冻功能上训练一个轻巧的任务条件解码器,尽管仅在模拟中接受了对渲染的对象的培训,但UAD对野外机器人场景和各种人类活动表现出显着的概括。UAD提供的可负担性作为观察空间,我们展示了一项模仿学习政策,该政策证明了有希望的概括,可以看到对象实例,对象类别,甚至在培训大约10次演示后进行任务指令的变化。项目网站:https://gpt-affordance.github.io/。
摘要:从大型多任务演示数据集中学习的模仿学习已成为构建普通能力的机器人的有前途的途径。结果,已经花费了1000个小时来在全球构建如此大规模的数据集上。尽管这种努力不断增长,但我们仍然缺乏对应收集哪些数据来改善机器人数据集的效用的系统性理解,并促进了下游政策学习。在这项工作中,我们进行了一项大规模的数据集组成研究,以回答这个问题。我们开发了一个数据生成框架,以在实际数据集(例如传感器放置,对象类型和安排)中模拟普通多样性,并使用它来生成具有控制组成的大规模机器人数据集,从而实现了在现实世界中会昂贵的数据集组成研究。我们专注于两个实际设置:(1)当未来的研究人员收集大规模的机器人数据集时,应强调哪种类型的多样性,以及(2)当前的从业人员如何从现有数据集中检索相关的演示以最大程度地提高关注任务的下游政策绩效。我们的研究产生了几个关键见解 - 例如,我们发现相机的姿势和空间排列是收集多样性和检索对齐方式的关键维度。在现实世界的机器人学习设置中,我们发现,不仅可以从模拟中进行洞察力,而且我们对现有数据集(例如Droid)的检索策略使我们能够始终如一地超过现有的培训策略高达70%。https://mimiclabs-iclr.github.io/
从使用卷积网络的传统行为克隆[1]到基于变压器的学习结构[2],广泛的研究已经对视觉场景的机器人动作轨迹进行了建模。最新的作品基于扩散模型[3]的成功,以生成运动轨迹以捕获多模式动作分布。流匹配是另一种新颖的生成方法。与随机的扩散概率模型共享理论相似性,流匹配旨在回归确定性矢量场,以将样品流向目标分布。证明,与解决扩散模型中的复杂随机微分方程相比,流动匹配目标的简单性可以在稳定的训练和发电质量中表现出色。尽管在图像生成方面取得了最新进展[4],但在机器人域中的流量匹配的应用仍未得到充满反感[5,6,7]。我们提出了流程匹配策略,以从原始视觉输入中学习模拟和现实世界的机器人行为并进行系统评估。
在2016年,新西兰政府设定了雄心勃勃的目标,即在2050年到2050年 - 捕食者免费2020年(PF2050,以下称),消除主要的侵入性掠夺性哺乳动物。这些物种包括三个芥末:雪貂(Mustela putorius furo),Stoats(M。Erminea)和鼬鼠(M. nivalis);三只大鼠:船只(Rattus rattus),挪威大鼠(R. Norvegicus)和Kiore(R。Exulans)和刷尾巴鼠(Trichosurus vulpecula)(Russell et al。2015;欧文斯2017)。在这个全国范围内消除了侵入性掠食者,从未尝试过,并且传统工具包被认为是不可能的。因此,如果要成功,我们需要大量的技术,运营和社会进步(Owens 2017; Tompkins 2018; Murphy等人。2019; Peltzer等。2019;罗斯等。2020)。