七度(DOF)机器人臂具有一个冗余DOF,以避免障碍物和奇异性,必须将其参数化以完全指定给定端e ff ent ector姿势的关节角度。常用于ABB,Motoman和Kuka的常用7-DOF Revolute(7R)工业操纵器以及SSRMS或FREND(例如SSRMS)的空间操纵器通常由肩el-肘(SEW)角度参数列出,用于路径规划和远程运行。我们介绍了一般的缝纫角,该缝隙角可以通过任意参考方向函数概括传统的缝隙角度。冗余参数化(例如常规缝纫角度)沿工作区中的一条线遇到算法奇异性。我们引入了一个参考方向功能选择,称为立体缝隙角度,该角度仅沿着半线具有奇异性,该界限可能无法触及,从而扩大了可用的工作空间。我们证明所有参数化都有算法的奇异性。最后,使用一般的缝纫角度和子问题分解,我们提供了e ffi cient奇异性逆逆运动溶液,这些解决方案通常是封闭形式的,但可能涉及1D或2D搜索。基于搜索的解决方案可以转换为查找多项式根。可以在可公开访问的存储库中获得示例。
图2转发器起重机:具有四个自由度的液压操纵器,在此图中指定为避免Q 1,Inner Boom Q 2,外臂Q 3和望远镜Q 4。它具有末端效应器,该效应器在繁荣的尖端上,作为抓取日志的工具。它被称为抓手,具有两个主动度的自由度,指定为旋转的Q 5,开口Q 6。所有传感器在逆时针方向上测量正阳性。
德克萨斯大学奥斯汀分校:研究生研究助理社会智能机器(SIM)实验室2017-2020●研究结合了模拟,深度学习,计算机视觉,人类机器人的互动和物理机器人●开发了Python和C ++的新算法,从)核和应用机器人小组(NRG)2014-2017●LED 4学生团队,并在辐射环境中发表了3篇有关机器人操纵器的计算机愿景的论文
摘要 — 本文介绍了一种标准化的移动机械手人机遥控界面 (HRTI) 评估方案。遥控操作仍然是开放环境中移动机械手的主要控制类型,尤其是四足机械手。然而,与传统机械相比,移动机械手,尤其是四足机械手,在工业中实施的系统相对较新。因此,尚未为它们建立标准化的界面评估方法。所提出的方案是评估移动机械手遥控操作的首个方案。它包括一组机器人运动测试、客观测量、主观测量和预测模型,以提供全面的评估。运动测试包括运动、操纵和综合测试。每次试验的持续时间被收集为客观测量中的响应变量。统计工具(包括平均值、标准差和 T 检验)用于交叉比较不同的预测变量。基于扩展的 Fitts 定律,预测模型采用时间和任务难度指数来预测未来任务中的系统性能。主观测量利用 NASA 任务负荷指数和系统可用性量表来评估工作量和可用性。最后,提出的方案在现实世界的四足操纵器上实施,该操纵器具有两个广泛使用的 HRTI、游戏手柄和可穿戴运动捕捉系统。
Spraymec 8100 VC SD 是一款移动式混凝土喷涂机,适用于中型至大型隧道施工项目。其久经考验的带喷枪的喷涂操纵器操作简单,工作范围广。可选的 SmartSpray 系统可帮助操作员进行喷涂,简化喷嘴引导,减少反弹,提高效率,最终提高喷涂质量。可靠且容量大的车载压缩机可实现高质量的喷射混凝土喷涂,而带有大直径钢管和软管的输送和喷嘴系统可最大限度地降低堵塞风险。
摘要 - 世界人口正在增加,到2050年,其对食物,饲料,燃料和纤维的需求几乎一倍。面临环境挑战,劳动力短缺也对农业生产系统构成了至关重要的挑战。农作物生产中手动任务的自动化可能会提高效率,但也会导致农业实践的变化,以更有效地使用可用的土地。在本文中,我们解决了在具有挑战性的现实情况下(例如垂直农场)的机器人果实收获的问题,在垂直农场中,机器人感应和表演需要应对杂乱无章的环境。机器人果实的收获通常是通过直接检测传感器读数中的掌握点来完成的,传感器读数可以根据农作物收获的要求在果实本身或其花梗上进行。然而,掌握点检测并不总是可能的,因为理想的抓紧点可能隐藏在叶子或其他水果后面。我们的方法利用了形状的完成技术,使我们能够估算目标果实的完整3D形状,即使在强烈的遮挡下,它的姿势也可以估算其姿势。以这种方式,即使只有部分可见,我们也可以估计一个掌握点。我们评估了在一个真正的机器人操纵器中运行在垂直农场中的实际机器人操纵器,并采用不同的收获工具。我们的实验表明,与最竞争的基线相比,我们提议的管道平均将成功率提高了18.5个百分点,而不是依赖形状完成的基线。
摘要本文认为,有效的人工智能控制算法需要工业机器人操纵器的内置对称性,以进一步表征和利用。此增强的乘积是一个四维(4D)离散的圆柱网格空间,可以直接替换复杂的机器人模型。a ∗是为了在此类算法中广泛使用,以研究在4D圆柱离散网格中指导机器人操纵器的优势和缺点。研究表明,这种方法可以在计划和执行时间内对机器人运动学和动态模型的任何特定知识来控制机器人。实际上,每个网格单元的机器人关节位置被预先计算并作为知识存储,然后在需要时通过路径填充算法快速检索。4D圆柱离散空间既具有配置空间的优势,也具有机器人的三维笛卡尔工作空间。由于路径优化是任何搜索算法的核心,包括∗,因此4D圆柱网格为搜索空间提供了一个可以嵌入单元特性形式的知识的搜索空间,包括存在障碍物的存在和整个工业机器人体的体积占用,以避免障碍物。主要的权衡是在预计网格知识的有限能力与路径搜索速度之间。这种创新的方法鼓励将搜索算法用于工业机器人应用,这是对不同机器人模型中存在的其他机器人对称性的研究,并为应用动态障碍算法的应用奠定了基础。
工业部门正在经历一个变革阶段,随着先进的机器人技术和人工智能(AI)技术的整合。本论文,探讨了数字双技术的协同应用以及增强学习在增强工业环境中机器人操纵器的效率和适应能力方面的应用。这项研究的核心前提重点是解决动态和复杂工业环境中手动程序方法的局限性。手动编程通常缺乏在各种且无法预测的环境中有效操作所需的适应性和学习能力。加固学习的合并使机器人操纵者能够通过与环境的互动来学习和调整,从而提高了运营效率,并最大程度地减少了对广泛编程工作的需求。数字双胞胎是物理环境的数字虚拟复制品。这允许在受控的,无风险的设置中对机器人操纵器行为进行模拟,分析和优化。将数字双胞胎与增强学习的集成能够对机器人系统进行有效的培训,从而使他们能够学习复杂的任务并适应新场景,而无需与现实培训相关的身体磨损和风险,并设置了环境。研究方法涉及开发数字双胞胎模拟环境,强化学习算法在此环境中的机器人操作器中的应用,并引起了学习任务转移能力对现实应用程序的重要性。该研究还研究了与数字双胞胎和加强学习技术相关的挑战。预期的结果包括提高机器人操纵器在工业应用中的适应性和效率,从而减少了为特定任务提供机器人所需的时间,成本和资源。此外,预计自动驾驶机器人操作的安全性和可靠性增强。这项研究旨在证明强化学习和数字双技术在转变工业机器人技术方面的潜力,从而为机器人应用提供了更具灵活,高效和智能的开发过程。本文对工业自动化的未来具有重要意义,为更适应性,高效和智能机器人系统提供了一种途径。通过利用AI和模拟技术的最新进步,它旨在为工业机器人技术的发展做出贡献,为更先进的工业解决方案铺平道路。
如果机器人太大,无法用物理方式操控,可以用几何形状基本相同的机器人复制品代替实际机器人。在编程过程中,操纵复制品会更容易。连接到机器人或复制品手腕的示教按钮可充当特殊编程设备。按下按钮时,操纵器的运动将成为程序的一部分。这允许程序员进行不属于程序一部分的手臂动作。程序员能够借助特殊编程设备定义最终程序中未包含的运动。