摘要 - 富有的机器人操纵器在微创手术中非常有用,这是由于它们具有高度灵活性的优势,并具有无限的自由度(DOF)。潜在的应用之一是进行吸血,这在手术过程中是不可避免的。为了在吸力方面提高效率,机器人尖端应保持垂直,同时沿工作表面移动。是出于本应用的激励,本文提出了一种新颖的软机器人设计及其控制方案,以正确配置两段软机器人的尖端,同时遵循工作表面上的计划轨迹。旨在减少切口尺寸和感染的可能性,设计和制造了直径为9毫米的电缆驱动机构的3D打印的柔软的操纵器。通过电动插入阶段添加了额外的DOF。使用分段恒定曲率假设对机器人系统进行建模,并采用RGB-D视觉来增强基于运动学的控制器的准确性。通过模拟评估了尖端定位和垂直化的性能,并通过实验进一步验证。结果证实了Ma-nipulator能够在各种速度下遵循不同轨迹的同时保持其尖端垂直。与其他类似的作品相比,我们的结果是在7 mm以内的轨迹跟踪RMSE和6°的最大角度偏差之内令人满意的。流体吸力实验,以证明其自动3D吸力的有效性。这项工作提供了一种新工具,可以支持外科医生进行手术吸血。
陀螺仪/磁通门 罗盘 俯仰/横滚传感器 Digiquartz 深度多普勒 速度计-ROV DP 自动功能(航向/深度/高度/位置) 16 站比例 NG3 主歧管 14 站比例推进器歧管-6 个备用功能 12 站比例工具歧管 500 瓦灯带调光电路可用 (6) 电路 x / 2 x 250 瓦灯每个标准 (6) 操纵器 左 – 5 功能 – Schilling Rigmaster 右 – 7 功能 – Schilling Titan T4 声纳
摘要 - 在机器人技术中限制模仿学习的关键瓶颈是缺乏数据。在移动操作中,此问题更为严重,由于缺乏可用且易于使用的远程操作界面,收集演示比固定操作更难。在这项工作中,我们演示了Telemoma,这是一种通用和模块化的移动操纵器近亲界面的界面。Telemoma统一了多个人类界面,包括RGB和深度摄像机,虚拟现实控制器,键盘,操纵杆等,以及其任何组合。在其更容易访问的版本中,Telemoma使用Simply Vision(例如RGB-D摄像头)进行了作品,从而降低了人类提供移动操作演示的入口栏。我们通过在模拟和现实世界中详细介绍了几个现有的移动操纵器(Pal Tiago ++,Toyota HSR和Fetch)来证明远程信息瘤的多功能性。我们通过训练模仿学习政策,用于涉及同步全身运动的移动操纵任务,证明了用远程瘤收集的示范质量。最后,我们还表明,Telemoma的Teleperation Channel可以在现场进行远程操作,查看机器人或遥控器,通过计算机网络发送命令和观察,并进行用户研究以评估新手用户学习与我们系统启用人类接口组合的不同组合的新手用户的容易。我们希望电视瘤成为社区使研究人员能够收集全身移动操作演示的有用工具。有关更多信息和视频结果,https://robin-lab.cs.utexas.edu/telemoma-web/。
随着AI技术的速度继续加速,研究人员可以使用更多的工具来解决长期存在的问题,今天可用的混合方法继续推动效率和精度的计算限制。这样的问题之一是冗余系统的逆运动学。本文探讨了7度自由操纵器的复杂性,并探讨了13种优化技术来解决它。此外,提出了一种新的方法来有助于算法研究领域。发现这比著名的传统粒子群优化技术快200倍。这种新方法可以用作新的搜索领域,将机器学习的探索性功能与数值方法的剥削能力相结合。
该模拟器使用磁场和激光配置来创建类似事件的视界,为模拟黑洞附近的量子隧穿创造条件。该装置希望在实验室环境中展示霍金辐射。量子场操纵器由超导量子比特和纠缠发生器组成。它创建并维持与 ZPE 场相互作用的纠缠态。超导电路(例如量子计算机中使用的电路,例如 transmon 量子比特)用于维持相干性并促进纠缠。具有纠错和稳定机制的量子计算机处理量子态,从而能够有效地从 ZPE 中提取能量。纠错码(例如表面码)用于保护量子信息免受退相干的影响。
摘要:双手机器人的远程操作正用于执行复杂的任务,例如医学手术。尽管技术取得了进步,但当前的界面对用户来说并不自然,他们花费大量时间来学习如何使用这些界面。为了缓解这个问题,本文提出了一种基于增强现实的新型远程操作双手机器人界面。所提出的界面对用户来说更自然,并减少了界面学习过程。本文详细介绍了所提出的界面,并使用两个工业机器人操纵器通过实验证明了其有效性。此外,还分析了使用操纵杆的经典远程操作界面的缺点和局限性,以突出所提出的基于增强现实的界面方法的优势。
摘要 - 动物操纵器在太空探索中起着关键作用,并为卫星寿命扩展,轨道资产检查和Deorbiting铺平了道路。但是,尽管设计用于零重力,但在地球重力下测试了太空机器人。大多数太空机器人都被构造出来,使它们无法承受地球的重力负载,因此需要对地面测试的外部支撑系统。但是,常规测试设施,却面临着重大局限性,包括工作空间的限制和动态影响。在这种背景下,计划了一种新型的悬挂系统,用于非重力空间机器人。为了应对这一挑战,本文审查了用于太空机器人测试设置的机械悬架系统,并概述了新颖的SUS-
www.manchester.ac.uk MSC机器人技术地点:曼彻斯特开始:9月持续时间:1年学费:35,000英镑的申请费:60英镑(非退款)英语要求:UKVI IELTS 7.0 7.0 7.0(NO其他元素低于6.5)课程单位列表:1:1-学期1:1-机器人系统(15个自动系统)2-机器人(15-机器人)4-机器人(15-机器人4-机器人系统设计项目(每学期30个学分 - 15个学分)2:5-自主移动机器人(15个学分)6-机器人操纵器(15个学分)7-认知机器人和计算机视觉(15个学分)8-机器人系统设计项目(15个学分)课程可在此课程中提供。