3. 解释为什么 CRISPR/Cas 复合物可以被描述为一个模块化系统。解释这给细菌带来的优势以及如何在研究或实验室中使用。 CRISPR/Cas 复合物由不同的构建块组成:可变的 CRISPR RNA 分子和始终相同的 Cas9 蛋白。 CRISPR RNA 分子彼此不同,因为每个分子都携带自己的间隔序列。这给细菌带来的好处是,不同的“病毒谱”可以以病毒 DNA 的形式存储在细菌基因组中,并且可以为每种病毒类型创建特定的 CRISPR/Cas 复合物,从而成功地在特定位置切割入侵的外来 DNA。这会在细菌的免疫系统中产生一种“特定记忆”。在实验室中,这可用于在特定位置特异性切割任何 DNA,从而使基因失去功能或插入新基因。工作表 3:农业革命 1. 创建术语的定义:转基因植物细胞。转基因植物细胞是其遗传物质含有外来基因的植物细胞。利用基因工程方法,将外来基因整合到植物基因组中。产生了重组 DNA。 2. 描述如何使用 CRISPR/Cas 基因编辑来创建具有抗性基因的玉米植物。在使用基因剪刀的过程中,它被引入植物细胞中。它可以在不插入外来 DNA(来自其他物种的基因)的情况下改变植物的基因组。为此,基因剪刀在所需位置剪断植物基因组。一个新的 DNA 片段(带有所需的抗性基因)可以准确地插入到此时。基因剪刀本身随后被完全降解。 3. 解释为什么玉米植株必须由转基因单细胞培育而成。细胞经过基因改造后,改变的遗传物质会在有丝分裂过程中传递给所有子细胞。因此,玉米植株是由转基因单细胞培育而成的。 4. 个人解决方案5. 参考任务4中的方法,解释与传统基因工程方法相比,使用CRISPR/Cas基因剪刀的优势。可能的优点: - 仅将基因剪刀引入细胞 - 无需外来 DNA(仅使用植物自身的 DNA)的基因改造 - 基因剪刀完全降解 - 简单、快速、廉价、精确 6. 区分基因工程和基因组编辑这两个术语,并解释与转基因产品的营销和开发有关的术语选择。基因工程包括跨越物种界限操纵基因的技术过程。传统方法是使用所谓的载体,将外来 DNA 引入要修改的基因组中。这种外来 DNA 通常含有要引入基因组的所需基因,通常来自细菌。因此,基因组通过引入细菌 DNA 获得了新的所需特性。就 CRISPR/Cas 剪刀而言,该工具只是在特定位置切割基因组并将所需的(抗性)基因插入那里。这种抗性基因也可以在实验室中产生,而且在这种情况下不必来自其他物种。在转基因产品的营销和开发方面,“基因组编辑”规避了基因工程必须遵守的严格规定。这也可能使此类产品在市场上获得更广泛的接受。
CRISPR-CAS9是编辑基因和基因组的强大工具。它使用引导的RNA在特定位置切割DNA,从而使研究人员可以操纵各种生物的基因组,包括动物,植物和微生物。基因编辑曾经被认为是科幻小说,但现在是现实。CRISPR-CAS9具有多种应用,包括创建遗传学的生物,治疗遗传疾病以及发展经济上重要的植物物种。有不同的方法来编辑基因,包括从生物体的基因组中插入,去除或删除序列。CRISPR-CAS9是为此目的最受欢迎的工具之一。它易于使用,高度准确且精确。该系统由核酸序列(CRISPR)和酶(CAS9)组成。需要一个引导的RNA(SGRNA)来促进目标特异性操作。CRISPR-CAS9系统于1987年首次由Ishino及其同事在1987年解释。在本文中,我们将使用简单的语言逐步解释该过程,以便初学者可以彻底理解它。我们不会从事科学写作,而要专注于外行术语的每个步骤。使用CRISPR-CAS9进行基因编辑的步骤是:1。选择实验2。选择目标基因位置3。选择并设计CRISPR-CAS9系统4。合成并克隆sgrna 5。交付sgrna和cas9 6。验证实验7。培养和分析替代细胞8。但是,其应用程序已扩展到各个字段。研究基因表达CRISPR系统首先用于研究基因敲除,其中从模型生物体中除去基因或DNA序列。通过遵循这些步骤,研究人员可以在实验室中执行基因编辑和基因工程。CRISPR-CAS9基因编辑:逐步指南我们将通过计算分析给定的基因,收集有关其序列,GC含量,表型和其他突变的数据。此信息将帮助我们设计带有指导的RNA来通过定位PAM序列来编辑基因。要选择一个用于沉默或去除的区域,我们必须选择适合我们实验要求的CRISPR-CAS9系统。提供不同的CAS蛋白,例如基因基因敲除,序列DCAS9的变化:激活和抑制以及其他诸如CAS13,Cas12,CSM,CMR和RNase III之类的其他。我们需要根据我们的需求选择正确的CAS9和CRISPR序列。CAS蛋白是一种可裂解单链和双链DNA的核酸酶。一个短的RNA序列(称为SGRNA或GRNA)可以通过靶向特定位置来编辑基因。sgrna有两个部分:具有互补的20个核苷酸的crRNA和识别Cas9的tracrocrrna环。一旦Tracrrna识别Cas,它就会将细胞核引导到裂口位置。,我们必须考虑到PAM序列的位置来计算设计SGRNA。一旦设计了GRNA,我们就需要将其合成并克隆质粒。我们的最先进的设施使我们能够在体外合成GRNA或SGRNA的寡聚。体外转录也有助于合成SGRNA。然后,我们选择一个特定的质粒,将GRNA基因插入其中,开发克隆,并分离从质粒表达的GRNA。现在我们的GRNA已合成,我们可以使用电穿孔方法将CAS9和SGRNA插入目标细胞中。我们还可以使用特定于CAS或病毒载体的mRNA,例如腺病毒,腺相关病毒,慢病毒和逆转录病毒。总体而言,CRISPR-CAS9基因编辑需要仔细的计划和执行。通过遵循这些步骤,我们可以使用这种强大的技术成功操纵基因。现在我们的CAS和SGRNA就在目标单元内,是时候验证敲除是否准确地发生了。用于验证的三种常见技术是聚合酶链反应(PCR),体外转录或DNA测序。DNA测序是在实验之前和之后进行的,使我们能够比较结果并确定是否已成功去除基因。PCR通过扩增从修饰细胞的目标序列来验证实验。此外,我们可以执行限制消化实验来验证结果。我们现在有了转基因细胞系,需要使用适当的培养基在无菌条件下培养它。一旦获得了足够量的细胞系,我们就可以将它们插入目标生物。注意:这是对CRISPR-CAS9机制的简化解释。Cas9核酸酶活性产生的差距不能保持未填充;取而代之的是,诸如非同源末端连接或直接DNA修复之类的DNA修复机制填补了空白。但是,我们的故事并没有结束。我们必须执行多个实验以检查改变的细胞的状态。基因表达研究是一种选择,我们在其中使用RT-PCR或定量PCR检查了所有细胞系改变基因的表达。可以在计算和物理上分析结果。计算工具有助于分析基因序列,表达谱等。体格检查有助于了解是否诱导了新的表型,是否仍然存在原始表型,或者结果不正确。此简短概述概述了在遗传实验室中进行CRISPR-CAS9实验的标准过程。但是,结果的特异性取决于我们选择的系统。如果我们选择了错误的CAS9,我们将无法实现所需的结果。SGRNA的设计也至关重要,因为如果不仔细设计,它可能会裂开未靶向区域。如果您有兴趣了解有关CRISPR-CAS9系统的更多信息,请从Addgene:CRISPR中阅读本文。与我们的新闻通讯一起呆在循环中,并包含最新的博客文章,发人深省的文章和重要的更新。另外,要第一个了解新产品和SNAG独家优惠!