摘要在增强的地热系统(例如)中,液压刺激用于提高生产率。egs通常在一个阶段的几乎垂直井中执行,而没有前提。在过去的几年中,石油和天然气行业通过使用多个阶段,支撑剂和水平(或偏离)井来实现刺激性能的根本改善。在大多数情况下,这些技术尚未在EG中采用。EGS社区的重点是“剪切刺激”的概念,将水注入引起自然裂缝的诱导滑移。结果,主管被认为是不必要的或无效的。使用包装工以实现多个阶段在技术上是不可行的,因为EGS井已完成孔洞(以最大程度地与天然断裂的连通性),并且在高温下没有可靠的敞开式包装工。在本文中,我们讨论了一种依赖于创建新裂缝而不是刺激自然断裂的EGS设计。在此设计中,钻孔(或偏离)井是用水泥壳进行钻孔并完成的。套管孔包装工或桥塞用于隔离区域,从而使多种阶段的断裂处理可以通过套管中的穿孔泵送。proppant被注入,可能与粘粘剂一起注入。我们进行了简单的计算,以估计多个阶段和支撑剂对通过EGS Doublet可以维持的流量的潜在影响。这些计算旨在进行粗略的估计并提供灵敏度分析,而不是提供详细的分析。我们发现,具有多个阶段和支撑剂的EGS设计相对于当前的设计,应具有显着改善的经济表现。具有足够的阶段,井孔中的压力损失将比储层中的压力损失更多。我们没有对热突破进行计算,但是我们希望使用多个阶段将有助于改善储层接触并防止过早的热突破。我们回顾了文献,以评估我们提出的设计的技术可行性。发现,当前技术可以使用额定为地热温度的壳体孔包装工。对EGS现场经验的综述表明,在极少数情况下,当使用支撑剂时,即使在花岗岩中,它们也始终提高了生产力。有一些实验室证据表明,在高温下可能会随着时间的推移化学降解,但也有证据表明某些涂层的支撑剂对降解具有抵抗力。拟议的设计将增加成本,但每口井的流量(和收入)的根本改善。
裂缝电导率的增强对于有效恢复地下资源(例如地热能和石油烃)至关重要。支撑剂,注射到液压裂缝中以保持其电导率的颗粒状材料,主要是在光滑裂缝的背景下(即平滑岩石表面之间的裂缝)进行了研究。然而,地球储层中常见的非平滑裂缝(即,粗糙岩石表面之间的裂缝)很常见,因此需要进一步研究。在这项研究中,我们对具有非平滑表面的页岩板上的断裂电导率进行了实验室测量,并使用晶格玻尔兹曼(LB)方法进行了数值模拟,该方法旨在研究具有和没有预料的情况下的非平滑裂缝的电导率。当陶瓷支撑剂浓度为2 lb/ft 2
油井增产处理 (WST) 涉及压裂碳氢化合物储层,以促进油气生产。从技术上讲,WST 是一种完井方法,用于在低渗透性储层中产生穿透性裂缝,以增加油井或气井的流动通道。常见的增产方法包括水力压裂、酸压裂和基质酸化。水力压裂或“压裂”是最常见的 WST 类型。它涉及将一种称为“支撑剂”的流体和物质混合物以高压注入油或气储层。注入的力会导致储层岩石破裂。当流体被移除时,支撑剂会保持裂缝打开。天然气或石油流入裂缝并流入井中。其他 WST 依靠酸(无论是否高压注入)来创建油流入井的通道。从 2016 年到 2021 年,加利福尼亚州不到 0.1% 的 WST 许可证用于酸刺激。
增产措施将在下部(5.25 英寸 x 7 英寸)完井后进行,将由 14 - 18 个增产套管组成。压裂套管/阶段之间的下部完井环空隔离将由水泥组成。下部完井将使用工作管柱进行支撑剂压裂,以打开套管、泵送压裂、倒出下部完井内的任何支撑剂,然后关闭套管,然后再上移到下一阶段。在最后一个增产阶段之后,工作管柱将从井中拉出。将安装 5.25 英寸 x 4.25 英寸完井管柱,并配备可剪切扶正器,以定位(但不密封)下部完井衬管悬挂封隔器抛光井筒插座 (PBR)。此外,深置塞将与生产封隔器一起运行,以提供“A”环空隔离。完井设计包括永久井下压力表 (PDHG) 和井下安全阀 (DHSV)。将安装防喷器 (BOP) 和采油树以及井口阀门。
增产措施将在下部(5.25 英寸 x 7 英寸)完井后进行,将由 14 - 18 个增产套管组成。压裂套管/阶段之间的下部完井环空隔离将由水泥组成。下部完井将使用工作管柱进行支撑剂压裂,以打开套管、泵送压裂、倒出下部完井内的任何支撑剂,然后关闭套管,然后再上移到下一阶段。在最后一个增产阶段之后,工作管柱将从井中拉出。将安装 5.25 英寸 x 4.25 英寸完井管柱,并配备可剪切扶正器,以定位(但不密封)下部完井衬管悬挂封隔器抛光井筒插座 (PBR)。此外,深置塞将与生产封隔器一起运行,以提供“A”环空隔离。完井设计包括永久井下压力表 (PDHG) 和井下安全阀 (DHSV)。将安装防喷器 (BOP) 和采油树以及井口阀门。
本文解决了石蜡矿床的问题,特别关注预防化学方法。在高能油生产中使用的抑制剂的有效性取决于其注入点,因此需要将试剂更深入地放置在“油储层孔”系统中。这项研究的目的是开发一种用于长期蜡抑制的方法,并通过实验评估井操作参数对抑制剂释放速率中生产液的影响。文章概述了一种石蜡抑制技术,该技术涉及将固体多孔颗粒注射到液压裂缝中,该骨折具有双重目的,既可以作为proppant和抑制剂来源。已经开发了一种方法,该方法是用固体乙烯 - 乙酸乙烯酯(EVA)饱和的多孔陶瓷颗粒,该方法在被油洗涤时逐渐释放到油流中,起作用,作为抑郁剂。过滤实验表明,这种抑制方法将抑制剂长期释放到油流中。即使过滤470孔量,通过模型支撑盒过滤的机油样品中的EVA含量仍保持在最小有效浓度水平上。从而减少了旨在防止和去除“石油储层”系统中的石蜡沉积物的干预频率。
hibit降低了渗透性,因此需要建立有效的地热系统(EGS)以利用深度地热能。在EGS中,用于液压压裂用于储层刺激,以人为增强的地热储层具有较高的渗透性。当前的深地热储量刺激技术主要是从石油和天然气部门采用的液压压裂过程中借来的,对刺激性能,地震风险控制和有效的地热储层的热萃取产生了限制。这项研究总结了深度地热能的液压压裂的特征:(1)剪切机理主导着断裂诱导的损伤。(2)冷水注入诱导的差分温度所产生的拉伸应力鼓励裂缝进一步传播。(3)连续的水注入使孔压力保持高于地层压力,从而为裂缝保持良好的条件保持开放。因此,EGS中的液压压裂不需要支撑剂。这与石油和天然气井的液压破裂完全不同,这在很大程度上依赖于支撑剂。此外,这项研究系统地分析了EGS的四个主要挑战:低发电能力,注入和生产井之间的连通性差,诱发破坏性地震的风险以及在没有补贴的情况下获得利润的困难。这项研究通过数值模拟研究了Regs的优势。根据创新的破裂和能量回收的各个方面,本研究提出了一种与能源存储相结合的创新增强的开发模式,称为再生工程的地热系统(REGS)。结果表明,与水平井以及不等的间距,区域和注射水的体积的多阶段分裂可以增强注入和生产井之间的连通性。破裂过程在Regs中进行了优化。具体来说,采用了多阶段裂纹。在每个阶段,早期的水注射率迅速增加,并在晚期逐渐下降。这可以防止在井眼压力下突然波动,从而控制诱发地震的幅度并防止破坏性地震。Regs整合了可再生能源的大规模地下存储,实现了多能补充并增强了Regs项目的生产寿命和盈利能力。这项研究的最终成员将为试点项目和标准化促进技术的标准化奠定基础,用于融合的热量和发电,与储能集成在一起,用于中国深地热能。
犹他州锻造项目很好地进行了一次注射良好,16a(78)-32和一个生产井,16B(78)-32,两者都进行了刺激,然后进行了循环测试以评估其连通性。图2是比较两个井的示意图。刺激过程采用了二氧化硅砂剂,多个簇阶段,冰箱塞,滑水和粘合的液体,可达到高达80 bbl/min(aka bpm)的注入速率以及高达1,075,200 lb/级的累积总支撑剂。井16a(78)-32的初始刺激发生在2022年4月。在2024年3月和4月,有效刺激了16A井(78)-32井(78)-32(78)-32(78)-32的四个阶段,然后进行了9个小时的循环测试(图3)。井16a(78)-32的刺激设计包括为每个阶段注入独特的纳米颗粒示踪剂,从而实现了刺激后的流量测量和评估井之间的循环效率,该井之间的循环效率是成功地于2024年8月和9月和9月和9月进行的。
抽象目的这项工作的目的是将硅树脂动脉瘤管置换为用于评估内皮细胞与神经血管器件的体外模型。第一个目标是建立一致且汇合的内皮细胞衬里,并随着时间的推移评估硅胶血管。第二个目标是使用这些硅酮血管进行流动分流和评估。用纤维蛋白涂有硅树脂管,并置于单个生物反应器系统中。人脐静脉内皮细胞被沉积在管中以形成硅酮血管,然后在蠕动泵上培养,并在2、5、7或10天收获以评估内皮细胞衬里。使用了一个硅树脂动脉瘤血管进行流动植入,并在部署后3或7天评估了对设备支撑杆的细胞覆盖率。结果有机硅血管保持汇合,PECAM-1(血小板内皮细胞粘附分子1)随着时间的推移阳性内皮细胞衬里。这些容器促进并承受了流动分流器的植入,并在设备部署后披露了强大的细胞衬里。此外,内皮细胞通过覆盖流动器支撑剂的覆盖范围,对植入的装置做出了反应,而部署后7天的动脉瘤比细胞覆盖率增加,而3天则是3天。结论有机硅动脉瘤模型可以被内皮化并随着时间的流逝而在体外成功维持。此外,这些有机硅容器可用于流动分流和评估。
抽象的新方法和改进的方法可以从热干岩中提取能量,如果成功的话,它们可以从以前未开发的资源中解锁能源生产的Terawatt。三种有希望的方法包括增强的地热系统(EGS),高级地热系统(AGS)和笼中的地球热系统(CGS)。EGS使用粒子支撑的液压刺激裂缝通过低渗透率岩石传达流体以提取热量。ags使用闭环流过一系列深井,以提取热量,而无需液压刺激。CGS使用边界井来包含高压支撑的液压骨折,同时最大程度地减少地震风险。但是,这些方法中的每一种都有其自身的挑战。例如,由于支撑剂降解和快速的热短路而导致的产量较低。ags可能会出现井钻孔和较低的热量提取的极端资本成本。CGS冒着未经证实的笼子概念和极端抽水成本的风险。在这里,我们试图在包括天然裂缝在内的超高不确定性绿色场景中预测每种方法的性能。我们的目标地点是科罗拉多州柯林斯堡附近的Wattenberg地热异常。使用我们的开源地热设计工具(GEODT)仅使用基本输入数据,我们为将来的6公里深井完成了随机功率和经济风险评估。在传导为主的瓦滕贝格异常中,我们预计底部孔温度在220至300°C的范围内。地下应力和断层条件未知。岩石性能除了地下室可能由火成岩或变质岩组成的地下室之外。我们的分析预测,具有五口井(即XGS)的“ X” pattern的CGS拥有99至220美元/MWH的经济热量产量的最大前景,其次是87至2200美元/MWH的3井EGS,然后是410至860至860 $ usd/mwh。