佩斯利(Paisley)的发射:不为人知的故事 - 一种雄心勃勃的文化再生策略,使佩斯利(Paisley)努力竞标英国文化城市2021年,这一旅程改变了整个伦弗鲁郡(Renfrewshire)的旅程,使其社区促使其社区促进成功。 在发布时,佩斯利(Paisley):不为人知的故事,制定了雄心勃勃的计划,通过文化再生来改变伦弗鲁郡(Renfrewshire),该文化在过去十年中取得了许多成功,尤其是主要活动和当地活动计划。 尽管在2017年的最后阶段被授予英国文化之城2021年的头衔,但伦弗鲁郡对文化再生投资的承诺却占了上风。 这包括未来佩斯利计划(Paisley Program)支撑的该地区文化资产中的主要资本投资,该资产旨在通过将文化作为社会和经济变化的机制来实现五个大胆的步骤变化。佩斯利(Paisley)的发射:不为人知的故事 - 一种雄心勃勃的文化再生策略,使佩斯利(Paisley)努力竞标英国文化城市2021年,这一旅程改变了整个伦弗鲁郡(Renfrewshire)的旅程,使其社区促使其社区促进成功。在发布时,佩斯利(Paisley):不为人知的故事,制定了雄心勃勃的计划,通过文化再生来改变伦弗鲁郡(Renfrewshire),该文化在过去十年中取得了许多成功,尤其是主要活动和当地活动计划。尽管在2017年的最后阶段被授予英国文化之城2021年的头衔,但伦弗鲁郡对文化再生投资的承诺却占了上风。这包括未来佩斯利计划(Paisley Program)支撑的该地区文化资产中的主要资本投资,该资产旨在通过将文化作为社会和经济变化的机制来实现五个大胆的步骤变化。
1。B。J. Kim,T。Nasir和J.-Y. choi,“石墨烯在低温下为将来的设备应用直接生长”,J。Korean Ceram。 SOC 55 [3] 203–223(2018)。 2。 Y。 M. Song等。 ,“具有节肢动物眼睛启发的设计的数码相机”,《自然》 497 [7447] 95-99(2013)。 3。 S。 E. Thompson和S. Parthasarathy,“摩尔定律:Si Microelectronics的未来”,Mater。 今天9 [6] 20–25(2006)。 4。 E。 POP,“纳米级设备中的能量耗散和运输”,Nano Res。 3 [3] 147–169(2010)。 5。 H。 F. Hamann等。 ,“热点限制的微处理器:直接温度和功率分布测量”,IEEE J.固态电路42 [1] 56-65(2007)。 6。 J。 Kim,J。Oh和H. Lee,“电动汽车电池热管理系统的审查”,Appl。 热。 eng。 149 192–212(2019)。 7。 S。 v Rotkin,V。Perebeinos,A。G. Petrov和P. Avouris,“碳纳米管电子中的热量耗散的基本机制”,Nano Lett。 9 [5] 1850–1855(2009)。 8。 C。 Faugeras,B。Faugeras,M。Orlita,M。Potemski,R。R。Nair和A. K. Geim,“ Corbino膜几何学中石墨烯的热导率”,ACS Nano 4 [4] 1889-1892(2010)(2010年)。 9。 W。 Cai等。 ,“通过化学蒸气沉积生长的悬浮和支撑的单层石墨烯中的热传输”,Nano Lett。J. Kim,T。Nasir和J.-Y.choi,“石墨烯在低温下为将来的设备应用直接生长”,J。Korean Ceram。SOC 55 [3] 203–223(2018)。2。Y。M. Song等。 ,“具有节肢动物眼睛启发的设计的数码相机”,《自然》 497 [7447] 95-99(2013)。 3。 S。 E. Thompson和S. Parthasarathy,“摩尔定律:Si Microelectronics的未来”,Mater。 今天9 [6] 20–25(2006)。 4。 E。 POP,“纳米级设备中的能量耗散和运输”,Nano Res。 3 [3] 147–169(2010)。 5。 H。 F. Hamann等。 ,“热点限制的微处理器:直接温度和功率分布测量”,IEEE J.固态电路42 [1] 56-65(2007)。 6。 J。 Kim,J。Oh和H. Lee,“电动汽车电池热管理系统的审查”,Appl。 热。 eng。 149 192–212(2019)。 7。 S。 v Rotkin,V。Perebeinos,A。G. Petrov和P. Avouris,“碳纳米管电子中的热量耗散的基本机制”,Nano Lett。 9 [5] 1850–1855(2009)。 8。 C。 Faugeras,B。Faugeras,M。Orlita,M。Potemski,R。R。Nair和A. K. Geim,“ Corbino膜几何学中石墨烯的热导率”,ACS Nano 4 [4] 1889-1892(2010)(2010年)。 9。 W。 Cai等。 ,“通过化学蒸气沉积生长的悬浮和支撑的单层石墨烯中的热传输”,Nano Lett。M. Song等。,“具有节肢动物眼睛启发的设计的数码相机”,《自然》 497 [7447] 95-99(2013)。3。S。E. Thompson和S. Parthasarathy,“摩尔定律:Si Microelectronics的未来”,Mater。今天9 [6] 20–25(2006)。4。E。POP,“纳米级设备中的能量耗散和运输”,Nano Res。3 [3] 147–169(2010)。5。H。F. Hamann等。,“热点限制的微处理器:直接温度和功率分布测量”,IEEE J.固态电路42 [1] 56-65(2007)。6。J。Kim,J。Oh和H. Lee,“电动汽车电池热管理系统的审查”,Appl。热。eng。149 192–212(2019)。7。S。v Rotkin,V。Perebeinos,A。G. Petrov和P. Avouris,“碳纳米管电子中的热量耗散的基本机制”,Nano Lett。9 [5] 1850–1855(2009)。8。C。Faugeras,B。Faugeras,M。Orlita,M。Potemski,R。R。Nair和A. K. Geim,“ Corbino膜几何学中石墨烯的热导率”,ACS Nano 4 [4] 1889-1892(2010)(2010年)。9。W。Cai等。 ,“通过化学蒸气沉积生长的悬浮和支撑的单层石墨烯中的热传输”,Nano Lett。Cai等。,“通过化学蒸气沉积生长的悬浮和支撑的单层石墨烯中的热传输”,Nano Lett。10 [5] 1645–1651(2010)。10。A。A. Balandin等。 ,“单层石墨烯的高热电导率”,Nano Lett。 8 [3] 902–907(2008)。 11。 C。 W. Chang等。 ,“同位素对硝酸硼纳米管的热导率的影响”,物理。 修订版A. Balandin等。,“单层石墨烯的高热电导率”,Nano Lett。8 [3] 902–907(2008)。11。C。W. Chang等。,“同位素对硝酸硼纳米管的热导率的影响”,物理。修订版
蛋白质是 DNA 复杂解码的产物,是遗传信息的终极体现。在细胞的繁忙范围内,这些分子主力承担着多方面的角色。它们多功能性的核心在于由四个字母的 DNA 字母表编写的极其优雅的代码。这种由氨基酸序列组成的代码决定了蛋白质的折叠和排列,形成令人眼花缭乱的结构阵列,每个结构都经过量身定制以实现特定功能。从为组织提供结构支撑的坚固胶原纤维到为细胞运动提供动力的灵活分子马达,蛋白质体现了基因组中编码的惊人多样性。本期特刊旨在汇集描述研究蛋白质结构科学进展的作品,包括酶、结构蛋白、膜和所有生物体。它也开放涉及四个结构层面的生物信息学和研究方法、这些物理层面之间的相互作用以及不同的免疫和抗原疫苗方面以及药物开发的工作。
氨开裂已被确定为解锁可持续经济的关键步骤。使用密度函数理论,我们对石墨烯和氮改性石墨烯支撑的过渡金属单原子催化剂(SAC)进行了建模,以研究催化NH 3裂纹过程。结果表明,(I)修饰石墨烯可确保过渡金属原子(M)比C-矩阵强,并且(ii)具有三个锚固硝基元(Mn 3)的结构比MN 4更具反应性。在IRN 3和运行3个SAC模型上,N 2进化决定了总速率,而在RHN 3 -SAC上,它是NH 3脱氢。与扩展金属表面相比,SACS上的温度填充模拟在SAC上显示出变化。批处理反应器被采用,以平衡基本步骤作为温度的函数的序列,从而揭示了整个NH 3裂纹活性。结果表明,IRN 3和RHN 3是NH 3在低至230°C下开裂的强大候选者。
我们研究了在有限的子系统上支撑的量子状态的普遍,均匀分布的出现,该量子状态通过投射介绍系统的其余部分而引起的。被称为深度热化,这种现象代表了比常规热化更强的量子多体系统中平衡的形式,这仅限于可观察到的一体组成的阀门。虽然在一个维度中存在量子电路模型,在该模型中可以证明这种现象可以准确地出现,但这些现象是特殊的,因为深层的热化是在与常规热化的完全相同的时间发生。在这里,我们提出了一个完全可溶解的混乱动态模型,其中可以证明这两个过程在不同的时间尺度上发生。该模型由一个有限的子系统组成,该子系统通过较小的收缩结合到有限的随机基质浴场,并突出显示了局部性和不完善的热化在约束这种通用波函数分布的形成中的作用。我们测试了针对精确数值模拟的分析预测,从而确定了出色的一致性。
当罗兰·乔菲(Roland Joffe)到达柬埔寨时,他注意到:“在金边生活中,一生又回到了这座困倦,时尚的首都 - 几年前的首都被淹没了其人口,作为一个空壳,被无知的折磨者及其毁灭性的大师居住在居住的情况下。当我站在潮湿的空气中时,降低的阳光逐渐用发光的粉红色洗涤,我抓住了亨先生的眼睛。他放弃了目光。我问他在想什么。他花了很长时间回答。当他与自己挣扎时,我们站着沉默。当他抬起头时,我可以看到眼泪慢慢地从他的脸上流下。“为什么?”他简单地问。一个回答的营充满了我的脑海。轻微停顿后,亨先生继续说道:“为什么?我们为什么不算?为什么没有人做任何事情?”再次贯穿了我的脑海 - 柬埔寨是对较大战争的杂物,这是对冷战支撑的意识形态斗争。但这不是亨先生想到的问题。“为什么?”他安静地问,‘你
翼梁,肋骨和字符串也是由支柱支撑的版本。的差异在于一个事实,即通过张力吸收一部分载荷(如果存在高翼的配置,如图2所示)或压缩(如果是低翼构造)。这意味着机翼的结构可以更轻,甚至可能在相同数量的质量方面更大[1]。这意味着在结构上更轻,更长,更薄的翅膀具有较高的细长度,从而提高了空气动力学效率或L/D比。此外,提高的效率将意味着飞机还需要减少燃料,从而减轻重量。,尽管这种配置也有一些缺点,因为支撑杆本身也增加了飞机的质量,并增加了飞机湿润的表面,从而增加了其寄生虫的阻力。也必须注意干扰和添加的结构复杂性,并且这种配置可能导致的空气弹性问题[2]。对于短途飞机来说,这种设计特别有趣,其中更具空气动力的机翼可以提供更高的攀爬速度和更滑的CD(连续下降)。
LVS-101和LVS-2011速度传感器已设计用于旋转机器的低频振动监测应用。更具体地说,传感器满足非常低速水电机的特殊低频要求。LVS传感器根据电动力原理运行,用于测量机器的轴承绝对振动。传感器的传感元件是围绕永久磁体移动的高精度弹簧支撑的线圈,该电压与振动速度成正比。通过设计,传感器具有出色的灵敏度和线性,降低到非常低的振动水平。内置电子设备允许传感器准确监视振动频率降低到0.5Hz。可以使用传感器的水平和垂直模型,有关全向传感器,请参见LVS-301。传感器提供了两个电压输出与振动速度成正比的电压输出:•与缓冲的非线性信号相对应的原始输出•低频补偿的动态振动速度信号,以监测到
‘水上飞机’ – 一种固定翼飞机,设计用于在水上起飞和降落,包括作为水上飞机运行的两栖飞机 ‘执照持有人’ – 水上机场的授权运营商 ‘飞机’ – 一种动力驱动的重于空气的飞机,其飞行升力主要来源于在给定的飞行条件下保持固定的表面上的空气动力学反应 ‘授权人员’ – 被授权代表巴哈马民航局行事的合格个人。 “固定平台” – 从岸边延伸到水面上并由支柱支撑的平台,用于与水上飞机并排放置,供乘客和货物上下机、加油或停车 “浮动平台” – 放置在开阔水域的平台,供水上飞机乘客或货物上下机 “水上机场” – 主要在水面上的划定区域,用于飞机全部或部分到达、离开和移动,以及地面或水上的任何建筑物和设备 “水上跑道” – 水上机场上划定的矩形区域,用于飞机沿其长度着陆和起飞 “活动区” – 机场中用于飞机起飞、降落和滑行的部分,由机动区和平台组成 “机动区” – 机场中用于飞机起飞、降落和滑行的部分,
工业部门因产品需求下降而遭受重创。这种情况迫使组织寻找能够生存的解决方案,并重新考虑实施基于数字化发展的可持续解决方案,以减少动态商业环境因素的波动性。因此,本研究旨在通过创新能力的中介作用来研究数字领导力与组织绩效之间的关系。研究对象由约旦 130 家工业公司的高级管理人员代表。研究数据是通过有目的的抽样收集的 248 份有效问卷进行统计分析,回复率为 63.59%。结构方程模型 (SEM) 用于分析研究数据并检验其假设。研究发现数字领导力对组织绩效和创新能力有积极影响,并表明创新能力对组织绩效有积极影响。此外,研究表明创新能力在数字领导力与组织绩效的关系中起着中介作用。因此,本研究有助于为基于创新模型的变革型领导理论的发展提供以实证证据为支撑的概念框架,从而提高绩效。