Mangrove Species Biomass (T Ha -1) Carbon (T C Ha -1) AGB BGB Total AGB BGB Total Rhizopora APICULATA 128.35 54.28 182.64 61.61 21.17 82.78 Avicennia Marina 84.67 37.44 122.11 40.64 14.60 55.24 Avicennia 37.36 18.16 55.52 17.93 7.93 25.02 Avicennia Officinalis 96.54 42.87 139.41 46.34 16.72 63.06 Stylosa Rhizopora 63.15 28.77 91.92 30.31 11.22 41.53 Sonneratia Alba 36.74 17.40 54.15 54.15 17.64 6.79 24.42 Osbornia octodonta 53.19 24.42 77.60 25.60 9.52 35.05 Sonneratia Caseolaris 12.65 6.86 19.50 6.07 2.67 8.75 AEGICILERA FLORIDUM 43.98 20.38 64.36 21.11 7.95 29.06 Ceriops Decandrara 39.67 19.19 58.86 19.04 7.49 26.53总计596.30 269.77 866.08 286.23 105.21 391.44
抽象支架被用作人体中的临时组织,以加快愈合的速度。生物相容性材料在组织工程领域起着至关重要的作用。因此,它们可用于尽快减轻人类疼痛。聚合物材料被广泛用于复制骨组织。poly(乳酸 - 乙醇酸)(PLGA)是骨组织支架的潜在材料,因为其具有出色的特性,包括与人体的兼容性。因此,添加羟基磷灰石和引入不同的制造方法可以使PLGA支架具有良好能力,以帮助细胞生长,扩展,区分和增殖。本文回顾了生物相容性材料PLGA作为骨组织支架的当前发展。它专注于PLGA的应用,属性,改进和可持续性。关键词:生物相容性材料,骨组织工程,聚(乳酸 - 乙醇酸)(PLGA),支架植入物引入生物相容性材料在医疗目的中的应用,尤其是在改善人类健康方面,已经积极开发。生物相容性材料必须具有可生物降解,强,化学稳定,无毒,无肺化和非自源性[1,2,3]。此外,它们必须可再生,环保和生物活性。骨科植入物代表人体中生物相容性材料的一种应用。生物兼容的材料不仅可以解决外体应用(假体)中遇到的问题,还可以解决内部体内恢复(植入物)(例如骨植入物再生)中遇到的问题[4]。骨骼是人体中的多功能器官,它们和骨骼提供体重的支撑并启用运动。它们主要由细胞和支架组成[5,6]。此外,骨骼具有多种生物学作用,例如保护重要器官和形成红细胞和生长因子。骨组织断裂或损害会限制流动性并导致残疾[6]。
成年干细胞在维持组织稳态和促进寿命方面起着至关重要的作用。在肠道,肺和皮肤中成年上皮干细胞中的复杂组织和存在作为这些细胞的标志。这些细胞在其各自的器官中的特定位置模式突出了它们所居住的利基市场的重要性。细胞外基质(ECM)不仅提供了物理支持,而且还充当各种生化和生物物理信号的储层。我们将考虑这三个上皮的增殖,修复和再生能力的差异,并回顾环境提示如何从利基市场中出现的环境提示调节细胞命运。这些提示是通过机械信号,调节基因表达来转导的,并将我们带到命运支架的概念。了解在各种器官中控制干细胞命运的机制中的类比和差异都可以为复兴治疗和组织工程提供宝贵的见解。
引言组织工程是一门多学科科学,其目的是创建可以恢复,维护和改善受损组织功能的生物替代物。1组织工程的主要组成部分是支架,细胞和生长因子。2一个组织具有许多结构和机械性能来发挥其功能。为了在组织工程中获得这些条件,将细胞培养在人工结构中。这些结构能够模仿和支持三维织物结构的结构。此结构称为脚手架,在体内和ex vivo中都使用。无论哪种情况,脚手架都是模仿体内活组织的模仿,使植入的细胞能够影响周围的微环境。3使用生物相容性和可降解材料获得生物支架。4尽可能地,这些支架的结构应与种植区域的质地一样相似。以这种方式,受损组织的重建和改进将增加质量和数量。除了高机械强度外,脚手架结构还必须具有
†加利福尼亚大学,加利福尼亚州圣地亚哥分校化学与生物化学系,美国加利福尼亚州拉霍亚‡加利福尼亚大学化学工程系,加利福尼亚大学戴维斯大学,加利福尼亚州戴维斯,美国加利福尼亚州戴维斯,美国微生物学和免疫学系,奥塔哥大学,奥塔哥大学,新西兰邓尼丁,新西兰;加利福尼亚州加利福尼亚州加利福尼亚州加利福尼亚州的加利福尼亚州,这些作者贡献了同样的贡献。*电子邮件:cseitz@ucsd.edu,sahn@ucdavis.edu,kurt.krause@otago.ac.ac.nz于1920年代发现的摘要,Cytochrome BD是一种终端氧化酶,是一种终端氧化酶,它已引起了人们的注意,因为它首次在2016年首次使用了药物结构。仅在原核生物中发现,我们在这里将其作为结核分枝杆菌(MTB)的药物靶标。对细胞色素BD的大多数药物发现工作涉及典型基板喹酮的类似物,即AurachinD。在这里,我们报告了六个新的细胞色素BD抑制剂脚手架,从一百万个分子的计算筛选中确定的六个新的细胞色素BD抑制剂脚手座,并通过体外测试确认了目标活性。这些脚手架为MTB疗法提供了新的铅优化途径。引入细胞色素BD氧化酶或细胞色素BD,1是一种仅在原核生物中发现的氧气还原酶,在有氧呼吸周期中将氧气降低至水。泛醇(或梅纳喹醇)与细胞色素BD结合,并将其氧化为泛氨基酮(或甲烷酮)。2
基于蛋白质的病毒样颗粒(P-VLP)通常用于空间组织抗原并通过多价抗Gen显示器增强体液免疫。但是,p-vlps是胸腺依赖性抗原,它们是自我免疫原性的,可以诱导可能中和平台的B细胞反应。在这里,我们研究了使用SARS-COV-2峰值蛋白的受体结合结构域(RBD)的多价抗原显示的替代性DNA折纸,这是Neu-Tralization抗体反应的主要靶标。用基于DNA的VLP(DNA-VLP)对小鼠进行顺序免疫,以依赖于显示的抗原和T细胞帮助的抗原价值的方式,会在SARS-COV-2中保护对SARS-COV-2的中和抗体。重要的是,与p-vlps相比,免疫血清不包含针对DNA支架的抗体抗体,而P-VLP会引起针对靶抗原和支架的强B细胞记忆。因此,DNA-VLPS增强了目标抗原免疫原性,而无需产生支架定向免疫,从而为颗粒疫苗设计提供了重要的替代材料。
摘要:在骨组织工程中,支架属性(例如孔径和机械强度)至关重要。本研究以聚己内酯 (PCL) 为原料,加入环氧氯丙烷 (Epi-PCL) 和甲基丙烯酰氯 (Meth-Cl),合成聚己内酯二甲基丙烯酸酯 (PCLDMA)。将 PCLDMA 与聚乳酸 (p-PLA) 混合,使用立体光刻 (SLA) 3D 打印骨支架。分析技术包括核磁共振 (NMR)、傅里叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM) 和压缩测试。使用人类成骨细胞 (HOB) 研究了降解动力学和细胞活力。研究结果表明,PCLDMA/p-PLA 复合支架优于原始聚合物。值得注意的是,PCLDMA-60(60% PCLDMA、40% p-PLA)表现出最佳性能。抗压强度从 0.019 到 16.185 MPa 不等,孔隙率从 2% 到 50%,降解率在三天内从 0% 到 0.4%。细胞活力测定证实了不同 PCLDMA 比率的生物相容性。总之,PCLDMA/p-PLA 复合支架,尤其是 PCLDMA-60,在骨组织工程中显示出巨大的潜力。
由于它们在生物制造,吸附,催化和能量转化应用方面具有巨大的潜力,因此人们对制造4D印刷的层次多孔结构从分子水平到宏观尺寸有很大的关注。为此,对于设计创新的构造,必须了解4D打印中智能材料的结构功能关系,而这些构建体不限于任何特定的自由度。在这里,我们报告了通过3D打印pickering型臀部的3D打印,以制造热响应性大量聚合聚合物高的内相乳液(Poly-hipes)。基于水的皮带油的油墨含有甲基纤维素/kappa-carrageenan混合物(非交叉链接)作为连续相,该相通过纤维素纳米晶体和纤维素纳米纤维的混合胶体稳定。基于皮克希的墨水显示出具有出色粘弹性界面特性的非线性和时间依赖性振动响应。在基于热融化的基于挤出的印刷过程中,Pickering-iphes的原位交联很容易地制造出多挑战型,这产生了一系列3D打印的热反应层次层次MAC ROPOLOPORFORFURES。4D打印的对象提出了高度相互连接的敞开多孔结构,该结构本质上具有热响应性。此外,这些4D结构显示出高机械强度,并具有出色的自我恢复性能。我们的结果提供了通过调节乳液配方在不同温度下开发具有形状记忆特征的热响应MAC rop的前景。
他汀类药物是 3-羟基-2-甲基戊二酰辅酶 A (HMG-CoA) 还原酶(一种限制胆固醇合成速度的酶)的特异性抑制剂,在高脂血症和动脉粥样硬化的治疗中发挥作用。多项研究报道了他汀类药物对骨质疏松症、血管生成、成骨作用和炎症调节的作用 (10, 11)。瑞舒伐他汀 (RSV) 是一类第二代亲水性他汀类药物,在减少脂肪和预防心血管疾病方面发挥作用 (12)。由于其亲水性,RSV 不易穿透细胞的双层脂质膜,需要特殊载体才能进入细胞。除了抗炎作用外,RSV 还可以刺激成骨作用、分化成骨细胞并减少氧化应激 (13)。这种他汀类药物通过增加一氧化氮的产生和抑制磷选择素的合成来帮助减轻炎症 (14)。 RSV 能降低破骨细胞活性,刺激成骨细胞分化,并促进骨矿化。它能增加骨形态发生蛋白 (BMP)-2 的表达和碱性磷酸酶 (ALP) 的活性 (10)。BMP-2 作为一种骨诱导因子,通过增加骨诱导基因的转录来促进骨形成,并刺激未成熟间充质细胞(包括成骨细胞)的分化。因此,与那些价格昂贵、半衰期短且可能因分子量高而引起免疫刺激的生长因子相比,BMP-2 的使用将更具优势 (10, 15)。
摘要:酶是许多工业应用必不可少的生物催化剂,但稳定性,选择性和受限的底物识别当前的使用限制。尽管酶工程在克服这些局限性方面的重要性,但通常会受到从天然来源衍生的酶的复杂建筑的挑战。计算方法的最新进展已使具有特定功能位点的简化支架的从头设计。这样的脚手架可能是酶工程平台的有利优势。在这里,我们提出了一种从从GH101酶家族的乙酰基乳糖苷酶活性位点(GH101酶家族的糖苷水解酶)的简化支架的从头设计的策略。使用Trrosetta幻觉,基于深度学习的结构预测的迭代循环以及蛋白质序列设计,我们设计了具有290个氨基酸的蛋白质,同时将分子量纳入了290个氨基酸,同时将分子量减少100 kDa,而不是初始的内膜α-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-乙酰乙酰基质抗乳酸化酶。在11种测试设计中,有6个表示为可溶性单体,与天然酶相比显示出相似或增加的恒温性。尽管缺乏可检测到的酶促活性,但代表性设计的实验确定的晶体结构以1.0Å的根平方偏差密切匹配设计,其催化性最重要的侧链在2.0Å之内。结果突出了脚手架幻觉在设计蛋白质中的潜力,该蛋白可能是后续酶工程的基础。关键字:从头设计,酶设计,糖苷水解酶,深网幻觉■简介