本报告概述了该项目的结构和方法以及其主要发现和进一步的研究需求。与上述总体目标不同,DEPA 2050 项目的主要目的是定义和评估两种航空运输技术情景,这两种情景都说明了航空业长期发展的类似现实路径。一种情景是处理全球客机机队中创新技术的加速传播。这种情景被定义为“进步”情景。另一种假设航空技术总体上进入市场的速度较慢,创新技术总数较少。这种情景被定义为“保守进化”情景。这两种情景的定义都需要对当前和未来的航空技术进行广泛而详细的分析。为此,我们开展了内部和外部研究和研究项目,从对这些技术的纯粹描述中得出对其潜在投入使用的稳健估计以及对其长期市场份额的预测。结合对框架条件进一步发展的估计(例如参考全球经济发展和人口增长的前景),使用基础分析来定义详细的特定于车辆的场景。这些是针对成熟的细分市场(即干线和支线飞机、小型航空运输、公务机和旋翼机)以及可能在未来几十年进入航空市场的新细分市场(即超音速飞机和城市空中交通工具)指定的。进一步而言,所选的情景方法允许预测到 2050 年每个细分市场的预期需求增长,这是在 DEPA 背景下进行预期影响研究的初始步骤
在大学航空飞行课程中设计和实施顶点喷气式飞机过渡课程 Chadwin T. Kendall 先生 丹佛都会州立大学 R. Rhett C. Yates 博士 杰克逊维尔大学 摘要 在过去的二十年里,先进的支线喷气式飞机模拟器,特别是庞巴迪和巴西航空工业公司系列,在大学航空界越来越受欢迎。这些模拟器的课程和程序应用为先进系统和机组资源管理 (CRM) 课程、学术研究和学生招募的改进让路。与此同时,美国航空公司,尤其是地区航空公司,鼓励进入其领域的大学航空学生接受喷气式飞机过渡培训。此外,经国际航空认证委员会 (AABI) 认证的大学航空课程必须具有飞行教育的终极高年级体验,其中可能包括顶点课程。大学航空课程现在可以使用这些喷气式飞机模拟器创建顶点课程。在顶点课程中使用区域喷气式飞机模拟器将允许课程评估飞行员技能并评估机组环境中的航空决策。它将允许大学航空课程评估其课程目标和学生学习成果,并为学生进入航空职业生涯的下一阶段做好准备。本文讨论了在大学航空中使用区域喷气式飞机模拟器设计和实施顶点喷气式飞机过渡课程。关键词:喷气式飞机过渡课程、CRM、顶点课程、课程、大学航空版权声明:作者保留在 AABRI 期刊上发表的手稿的版权。请参阅 AABRI 版权政策,网址为 http://www.aabri.com/copyright.html
(2) 除了通过晋升填补科学家“B”的职位外,这些职位不受联邦公共服务委员会的招聘管辖。 (3) 科学家“B”的职位招聘应通过附表一中规定的直接招聘、晋升或委派(包括短期合同)的方式进行。 (4) 科学家“C”至“G”的职位招聘应通过附表二中规定的直接招聘、根据灵活补充计划(FCS)晋升/提升或委派(包括短期合同)的方式进行。 (5) 中央政府应随时决定每个职位或每个科学家“B”案例的具体招聘方法。 (6) 对于科学家“C”至“G”的职位,应首先考虑从根据灵活补充计划被推荐晋升到下一个更高级别的支线级别科学家中填补空缺。但是,根据职能需要并经中央政府批准,部分空缺可以通过直接招聘或委派(包括短期合同)的方式填补,具体方式视空缺程度而定,并在核准的总人数内与个别候选人的较高资历和技能相称。(7)每个职位或直接招聘的具体学科和具体科目由中央政府决定,同时考虑到不同学科科学家的可用性以及某一学科对科学家的进一步要求。具体学科应从本规则附表四和附表五中提到的学科列表中选择,具体科目应从本规则附表四/附表五中该特定学科下提到的科目列表中选择。(8)退役军人可根据中央政府不时发布的命令以再就业方式招聘。
序言 应加拿大交通部运输发展中心的要求,APS 航空公司开展了一项研究计划,以进一步推进飞机地面除冰/防冰技术。APS 测试计划的具体目标是: • 为新的 IV 型液体制定保持时间表并验证液体特定表和 SAE 表; • 确定液体类型、降水和风对液体失效位置和时间的影响,以及加拿大支线喷气式飞机和高翼涡轮螺旋桨通勤飞机上的失效进展; • 建立足够的实验数据来支持仅用于除冰的表格的开发,以作为行业指南,并评估用作两步除冰操作第一步的液体的冰点温度极限; • 确定在旋转速度下,由于防冰液在冻结降水中失效而导致的污染物无法从喷气式运输机的机翼流出的条件; • 通过在标准平板上进行一系列测试,记录流体故障的出现情况和故障时流体的特性;以及 • 确定使用冰污染传感器系统检查飞机起飞前机翼状况的可行性。该计划代表加拿大运输部在 1997-98 年冬季开展的研究活动记录在六份单独的报告中。这些报告的标题如下: • TP 13318E 1997-98 年冬季飞机地面除冰/防冰液保持时间现场测试计划; • TP 13314E 1997-98 年冬季飞机除冰操作研究; • TP 13315E 飞机除冰液冰点缓冲要求:仅除冰和两步除冰的第一步; • TP 13316E 1997-98 年冬季污染飞机起飞测试;
前言 应加拿大交通部运输发展中心的要求,APS 航空公司开展了一项研究项目,以进一步推进飞机地面除冰/防冰技术。APS 测试项目的具体目标包括: • 制定新型 IV 型液体的保持时间表,并验证液体专用表和 SAE 表; • 确定液体类型、降水和风对液体失效位置和时间的影响,以及加拿大支线喷气式飞机和高翼涡轮螺旋桨飞机上的失效进程; • 建立足够的实验数据来支持制定仅用于除冰的表格作为行业指南,并评估用作两步除冰操作第一步的液体的冰点温度限值; • 确定在喷气式运输机受到旋转速度时,由于冰冻降水而导致的防冰液体失效造成的污染物无法从机翼流出的条件; • 通过在标准平板上进行一系列测试,记录液体失效的出现情况和失效时液体的特性; • 确定通过使用冰污染传感器系统在起飞前检查飞机机翼状况的可行性。 该计划代表加拿大交通部在 1997-98 年冬季开展的研究活动记录在六份单独的报告中。这些报告的标题如下: • TP 13318E 1997-98 年冬季飞机地面除冰/防冰液保持时间现场测试计划; • TP 13314E 1997-98 年冬季飞机除冰操作研究; • TP 13315E 飞机除冰液冰点缓冲要求:仅除冰和两步除冰的第一步; • TP 13316E 1997-98 年冬季受污染飞机起飞测试;
对平行系统的荣誉表示,塞拉利昂北部铁路(Sierra Northern Railway)加利福尼亚州文图拉县 - (1月##,2024年) - 塞拉利昂北部铁路和Sunburst Train Applaud Parlatel Systems在南加州的新“平台”测试中取得了成功。并行系统上个月宣布,他们的大型电动货车现在可以“通过保险杠到保险杠接触形成排”。这种自动排的排列消除了对贸易耦合的需求。现在,其无人电动连接允许在铁路网络上对货运进行分类。“看到这种情况就在我们的后院发生真是太糟糕了,”塞拉北部铁路总裁肯南·布尔德三世说。“当我们指定一条铁轨以使用菲尔莫尔以东的平行系统时,我们对他们在行业中所做的工作感到兴奋货运汽车,独立制动和保险杠到碰碰的提高能量效率都在Railyard和货运交付中急需的灵活性。做得好,并行系统。” Sunburst火车的母公司塞拉北部铁路和Mendocino Railway在Mulople铁路服务上使用Innovaoons:在Santa Paula中以铁路的形式添加独特的娱乐机会Sierra Northern Railway(Sera)于2003年通过两条北加州短线铁路合并:塞拉铁路公司和Yolo Shortline Railroad。该公司于2022年成为圣保罗分公司线的合同运营商。圣保罗分支线最初是由南部太平洋铁路(Southern Pacifif)在1887年以标准规模的铁路建造的。该赛道被南部太平洋地区广泛使用,直到1950年代,沿着圣克拉拉河沿线的柑橘却将柑橘拖到包装上。购买了该线
204 从 Frenchman 支路到 Murphy Dome Road 的新通道 205 Old Murphy Dome Road 需要 ROW 213 到 Ester Dome 区域的新通道 214 将 Old Ridge Road 连接到 Old Nenana Highway 217 连接两个分区并提供备用通道 228 通过 Desperation 分区提供到大地块的新通道 232 更换走廊 #29 和 #30 234 提供到 Adit 支路、大地块和 Old Murphy Dome Road 的额外通道 243 提供备用通道并连接到 Chad St 和 Ridgemont 的规划道路支路 251 将 Musk Ox 分区连接到 Ski Boot Hill 254 提供到 Spinach Creek 的备用通道 256 通过 Winchester Road 支路到 Old Murphy Dome Road 提供额外通道 272 提供到 Murphy Dome Road 南部大地块的新通道 274 通过现有的规划道路提供备用通道残桩 275 通过 Birch Hollow 残桩提供对地块的访问 281 通过 Hawkeye Downs 残桩提供对地块的访问 282 提供对分区的替代访问 309 将 Smallwood Trail 连接到 Hopper Creek 310 获得沿 Amanita Road 的 ROW 314 使用残桩创建 Misty Fjords 到 Chena Valley View 的连接 331 将新规划的道路向东延伸,以连接 Amanita Road 和 Boreal Heights 349 将走廊 #51 延伸到 Chena Hot Springs Road,通过 Heritage Hills 357 与 Bates Street 形成一个环路以提供新的访问 358 通过走廊 #301 和 Silverfox 将 Steese Highway 连接到 Elliot Highway 359 通过现有道路地役权将 Reschaven 残桩连接到 Chigmit 361 从走廊 #57 形成一个环路,以避免长长的死胡同 362 连接 John Cole 至 Hopper Creek 和 Smallwood 地区 369 连接 Chief John 和 Reschaven 支线 379 连接 Fiddle Way 至 Becker Ridge 384 连接 Moosewood 至 Birch Knoll 386 连接 125 号和 122 号走廊 387 连接 Sebaugh 至 Joline,穿过 SLE 404 取代 38 号,通过需要 ROW 的已建道路连接 Amanita-Hopper Creek 405 连接 Johnson Road 至 Grieme
化学和酶促探测作为RNA二级结构信息的实验来源的历史悠久。近年来,此类方案与高通量测序方法相连,以提供对整个转录组结构信息的访问(Kubote等,2015; Carlson等,2018)。尽管结构探测的有用性无可争议,但重要的是要记住,任何探测方法提供了一个编码RNA结构信息的信号,但远离直接测量或明确确定结构的信号。RNA结构的广泛经验证据已被整合到RNA二级结构预测的“标准模型”中。It de fi nes an RNA secondary structure as a collection of Watson-Crick and GU base pairs such that i) each base has at most one pairing partner, ii) base pairs do not cross, i.e., if ( i , j ) is a pair, then there is no pair ( k , l ) with i < k < j and l < i or l > j , and iii) every base pair spans at least three unpaired positions ( Lorenz et al., 2011 )。这种类型的每种结构都与可以计算为其循环总和(其独特平面嵌入的一个方面)的能量相关联,该能量对应于堆叠的碱基对,发夹环,内部环和多支线环路。每个循环的能量贡献取决于其顺序,但独立于其外部环境。从序列依赖性环能贡献的综合表中(主要是)通过在小型,特定的设计RNA分子上进行的熔化实验(Andronescu等,2014)。(Turner and Mathews,2010年),它们用于确切的动态编程算法,这些算法预测了任意RNA序列的辅助结构的玻尔兹曼集合中的基态结构或基本配对概率。我们注意到随机上下文无语法(SCFG)在本质上使用相同的模型(Rivas等,2012),并且可以作为热力学方法的替代方法。通常,使用已知结构的学习方法进行参数化,例如,参见(Do等,2006)。出于当前贡献的目的,只有一个“通用”模型可以预测(合理的近似值)二级结构以任意RNA序列为输入。经验证据,例如,从探测实验中可以包括在普遍的结构预测方法中,作为与经验证据相矛盾或额外能量项(软约束)相矛盾的硬性约束结构,偏爱与其他结构更好地符合其他经验数据的结构,请参见,例如,请参见,例如(Lorenz等,
目录 未来前景 ix 致谢 xii 01 1 航空货运——更加努力 1 供应链面临压力 5 航空货运的优势 6 运输方式转变 7 02 9 航空货运的世界 9 利润 10 地球 12 人 13 03 19 航空货运的历史 19 法规和协议 19 柏林空运 21 航空货运的增长 22 当今的航空货运市场 27 结论 33 04 37 机场连接 37 全球化 37 环境压力 38 机场类型 40 集成商 43 总结 43 05 45 货物处理代理——IT 的影响 45 早期 45 计算机技术起步阶段的航空公司 46 变化因素 49 一般处理代理的作用 59 结论 66 06 67 公路支线服务 67 在路上 67 欧洲市场 69 结论 76 07 77 货运代理 77 货运代理的发展 78 协会和网络 79 08 87 冷链物流 87 冷链 87 制定标准 89 冷链业务 89 结论 103 09 105 快递和邮件 105 市场部门 106 贸易模式的变化 107 集成商 107 邮政服务 109 结论 111 10 113 特殊空运货物 113 包机经纪人 114 动物 114 重型货机起飞 118 飞行时尚 121 工艺品 123 在电网上 124 结论 125 11 127 货物安全和风险 127 犯罪 127 恐怖主义 130 自然灾害 133 健康危害 135 网络犯罪 140 腐败 140 结论 141 12 143环境 143 问题 143 应对措施 145 航空货运的额外负担 148 13 151 航空物流的创新和趋势 151 行业领导者一致认同 151 不断变化的购买习惯 156 14 163 对未来的看法 163 Enno Osinga 163 Alexis Sioris 164 Heiner Siegmund 166 Fred Smith 168 Dieter Haltmayer 169 Michael Sales 170 Stan Wraight 172 Ram Menen 174 15 175 法律 – 管理国际航空的组织和法规 175 《华沙公约》 175 监管机构 176
已投入运营或正在开发的太阳能分布式发电(小于或等于 3 兆瓦):65.9 兆瓦 1. 诺福克市老道明大学,0.13 兆瓦 2. 阿什兰镇伦道夫·梅肯学院,0.05 兆瓦 3. 切萨皮克市西部支线高中,1 兆瓦 4. 杰克大道,丁威迪县,3 兆瓦* 5. 奥古斯塔县 Elm Spring,3 兆瓦* 6. 汉诺威县 Spring Run Solar 1,1 兆瓦* 汉诺威县 Spring Run Solar 2,1 兆瓦* 汉诺威县 Spring Run Solar 3,1 兆瓦* 7. 格洛斯特县 Wood Brothers Road 1,1 兆瓦* 格洛斯特县 Wood Brothers Road 2,1 兆瓦* 格洛斯特县 Wood Brothers Road 3,1 兆瓦* 8. 威斯特摩兰县 Springfield Solar, 2 兆瓦 9. Black Bear Solar,白金汉县,1.62 兆瓦 10. Rappahannock Solar,兰开斯特县,1.5 兆瓦* 11. Tredegar Solar Canopy,里士满市,0.43 兆瓦 12. USS Hilltop Solar LLC,罗克布里奇县,3 兆瓦* 13. Kenbridge B,伦嫩堡县,3 兆瓦* 14. Fishersville A,奥古斯塔县,3 兆瓦* 15. Petersburg C,切斯特菲尔德县,3 兆瓦* 16. Acorn,哈里森堡市,1.4 兆瓦 17. Racefield,詹姆斯市县,3 兆瓦 18. Ivy Landfill,阿尔伯马尔县,3 兆瓦 19. USS Mt. Sydney Solar,奥古斯塔县,3 兆瓦* 20. Waynesboro B,奥古斯塔县,3 兆瓦* 21. Nathalie C,哈利法克斯县,3 MW* 22. 阿尔伯塔,不伦瑞克县,3 MW 23. Kiddsville Road,奥古斯塔县,2.5 MW* 24. Kings Highway North,夏洛特县,2.7 MW* 25. Kings Highway South,夏洛特县,2.3 MW* 26. 惠特比太阳能,不伦瑞克县,1.7 MW* 27. PEVA15 – 太阳能,赫特市,2 MW* 28. VAL035 – 太阳能,怀特岛县,3 MW* 29. VAL032a – 太阳能,威斯特摩兰县,1 MW* 30. USS Staunton,斯汤顿市,3 MW*