抽象引入低血糖是为1型糖尿病患者实现推荐血糖靶标的主要限制因素。暴露于复发性低血糖会导致对低血糖的荷尔蒙反调节和症状反应。有限的有关反复转化低血糖的代谢适应性数据有限。这项研究检查了对低血糖症的急性代谢反应以及先决性低血糖对1型糖尿病中这些反应的影响。研究设计和方法二十一名门诊患者患有1型糖尿病,患有正常或受损的低血糖意识参与了一项研究,该研究通过高胰岛素葡萄糖钳连续2天评估了对低血糖的反应。参与者在高胰岛素葡萄糖夹期间经历了一段正常血糖和低血糖期。血浆样品在正常血糖期间以及降血糖时期的开始和结束时采集。对等离子体样品的代谢组分析是使用综合二维气相色谱法进行了飞行时间质谱。总共研究了68个代谢产物。在第1天,分支链氨基酸的浓度,亮氨酸(P = 3.8×10 -3)和异亮氨酸(P = 2.2×10 -3),在低血糖期间降低。在低血糖期间,第2天,五种氨基酸(包括亮氨酸和异亮氨酸)显着降低,两种脂肪酸(四核酸和油酸)显着增加(p <0.05)。在1型糖尿病患者中得出结论,低血糖的一集降低了亮氨酸和异亮氨酸浓度。尽管在第2天对低血糖的反应反应更多,但在2天之间,单个代谢产物的反应在统计学上没有统计学意义。先前的低血糖导致五种氨基酸的降低,并增加了两种脂肪酸的浓度,这表明两种低血糖发作之间发生了变化,这可能表明可能适应。但是,需要更多的研究来全面了解这些改变的后果。试用注册号NCT01337362。
作为各种心血管疾病的终末阶段,由于其高死亡率和有限的治疗选择,心力衰竭引起了极大的关注。研究人员目前正在集中精力研究碳水化合物,脂肪酸和氨基酸的代谢,以增强心血管疾病的预后。同时,包括亮氨酸,异亮氨酸和缬氨酸在内的分支链氨基酸(BCAA)在血糖调节,蛋白质合成和胰岛素敏感性中起着重要作用。然而,BCAAS代谢的破坏与高血压,肥胖和动脉粥样硬化等疾病有关。本文探讨了复杂的代谢途径,揭示了破坏的BCAA代谢与心力衰竭进展之间的联系。此外,本文讨论了治疗策略,评估了BCAA对心脏功能障碍的影响,并研究了调节BCAA代谢作为心脏衰竭治疗的潜力。BCAA及其代谢产物也被认为是评估心脏代谢风险的生物标志物。总而言之,本文阐明了BCAA在心力衰竭和心血管健康中的多方面角色,为未来的研究和干预措施提供了指导。
简介非酒精性脂肪性肝病 (NAFLD) 的特征是肝脏中中性脂质积聚。大约每 5 个病例中就有 1 个伴有病理性炎症和肝细胞损伤(气球样变性),称为非酒精性脂肪性肝炎 (NASH) (1)。这种更致病的 NAFLD 形式在约 35% 的患者中发展为纤维化,显著增加患肝细胞癌、肝硬化和急性肝衰竭的风险。晚期 NAFLD 也是导致 2 型糖尿病和心血管疾病的重要风险因素 (2, 3)。近年来,由于肥胖大流行,NAFLD 的发病率急剧上升;这导致 25% 的美国人口被诊断患有 NAFLD。NALFD 相关肝衰竭的发病率现在与丙型肝炎相当,是需要肝移植的主要原因 (4)。个人患 NAFLD 的倾向取决于遗传、生活方式、饮食和胰岛素敏感性 (5, 6)。肝脏甘油三酯库受肝脏脂肪来源的非酯化脂肪酸 (NEFA) 供应、肝脏从头脂肪生成 (DNL)、NEFA
引言肾脏在调节哺乳动物的葡萄糖稳态方面具有重要作用。在肾小球中过滤了大约180克/天葡萄糖,绝大多数被肾近端小管细胞(KPTC)重吸收,主要是通过钠 - 葡萄糖葡萄糖共转运蛋白2(SGLT2)(SGLT2)(SGLT2)(1-3)。在糖尿病中,葡萄糖吸附增加,从而加剧了高血糖症(3)。sglt2抑制剂(SGLT2I)诱导糖尿病,通常用于治疗糖尿病。引人注目的是,大规模试验始终显示SGLT2I有效地防止了肾功能的下降,并改善了有或没有糖尿病患者的充血性心力衰竭的心脏功能;这些改善包括对末期肾脏疾病的进展减慢,心力衰竭的住院时间较少,死亡率降低(4-10)。早期临床研究表明,SGLT2I对非酒精性脂肪肝病(NAFLD)患者也有益(11,12)。有趣的是,SGLT2I Canagliflozin已显示可延长老年男性啮齿动物的寿命(13)。SGLT2I的这些强大的多机构有益作用表明,通过增加糖尿的葡萄糖负荷减少葡萄糖负荷会诱导系统的代谢重编程,从而影响遥远器官的代谢。ferrannini及其同事表明,在2型糖尿病患者中,SGLT2I诱导的糖尿症与内源性葡萄糖产生的增加有关,胰岛素敏感性增强以及从碳水化合物到脂质的底物利用率转移(14,15);已经假设这种代谢转移介导了SGLT2I的有益心脏作用(2)。根据这一假设,糖尿降低
血液代谢物是反映遗传和环境因素相互作用的小分子,并作为复杂的细胞调节途径的最终产物,被认为是疾病过程的可靠指标(Wang等,2019)。这样的一组代谢物是分支链氨基酸(BCAA),包括亮氨酸,异亮氨酸和缬氨酸,这对于蛋白质合成至关重要,需要饮食摄入。研究已将BCAA摄入水平与多种疾病联系起来,例如高血压,动脉粥样硬化,心脏病,心力衰竭,癌症和胰岛素抵抗(Grajeda-iglesias和Aviram,2018; Nie等,2018; Flores-Guerrero et al。有趣的是,积累证据表明BCAA可以触发神经退行性变化并参与神经退行性疾病的发病机理(Yoo等,2022)。
摘要:马铃薯 ( Solanum tuberosum L.) 是继水稻和小麦之后的第三大重要粮食作物。其块茎富含以淀粉形式存在的膳食碳水化合物,具有多种工业应用。淀粉由直链淀粉和支链淀粉两种多糖组成,它们的比例决定了不同的特性和功能。支链淀粉含量较高的马铃薯品种具有多种食品加工和工业应用。利用农杆菌介导的转化技术,我们将成簇的规律间隔短回文重复序列和 CRISPR 相关蛋白 9 (CRISPR/Cas9) 试剂递送到马铃薯 (品种 Yukon Gold) 细胞中,以破坏颗粒结合淀粉合酶 ( gbssI ) 基因,目的是消除淀粉的直链淀粉成分。块茎的卢戈氏碘染色表明,在一些编辑事件中直链淀粉减少或完全消除。高氯酸和酶法进一步证实了这些结果。一个事件 (T2-7) 显示所有四个 gbss 等位基因均发生突变,块茎中的直链淀粉被完全消除。使用快速粘度分析仪 (RVA) 测定了来自六个不同敲除事件的块茎淀粉的粘度曲线,这些值反映了支链淀粉/直链淀粉的比例。后续研究将重点关注从事件中消除 CRISPR 成分,并评估具有各种直链淀粉/支链淀粉比例的克隆在食品加工和其他工业应用中的潜力。
最近的发现 - 治疗可以防止患有该疾病的牛犊中致命症状的复发。它防止了新生儿死亡,归一化的生长,恢复了受影响基因的协调表达,并稳定了小腿和小鼠中的生物标志物。枫糖浆尿液疾病(MSUD) - 这是一种罕见的遗传疾病,其特征是酶复合物缺乏(分支链α-酮酸脱氢酶)。分支链α-酮酸脱氢酶需要分解(代谢)体内的3个分支链氨基酸(BCAAS)亮氨酸,异亮氨酸和瓣膜。这种代谢衰竭的结果是,所有3个BCAA及其许多有毒副产品(特别是它们各自的有机酸)都异常积累。在经典,严重的MSUD形式中,BCAA的血浆浓度在出生后的几个小时内开始上升。如果未经治疗,症状通常会在生命的最初24-48小时内出现。类型 - 经典类型,中间类型,间歇性类型以及可能是硫胺素反应类型。原因 - 当BCKDHA,BCKDHB或DBT基因的突变形式从父母双方继承时。症状 - 神经功能障碍增加的非特异性症状,包括嗜睡,易怒和喂养不良,很快
主持人:Angelle Jones&Haley Todd Grant Hagedorn,CCB博士学位学生,Krushna Patra Lab博士,UC癌症生物学系Krushna Patra Lab博士:“分支链氨基酸代谢促进细胞的生长和线粒体的生长和线粒体的形态功能基因组学方法是发现作用机理和对iodva1的抗性机制
考生应能识别单糖(分子式 - C n (H 2 O) n )的例子,包括:丙糖(甘油醛)、戊糖(核糖、脱氧核糖)和己糖(α- 和 β- 葡萄糖、果糖、半乳糖)。考生应能识别双糖(分子式 - C 12 H 22 O 11 )的例子,包括:蔗糖(葡萄糖-果糖)、麦芽糖(α- 葡萄糖 - α- 葡萄糖)和乳糖(葡萄糖-半乳糖)。考生应能识别出以下多糖的例子:淀粉,α-葡萄糖的聚合物(由直链淀粉和支链淀粉组成),糖原,α-葡萄糖的聚合物(支链结构),纤维素,β-葡萄糖的聚合物和几丁质,β单体的聚合物,其中一些-OH基团被含氮的乙酰胺基团取代。纤维素和几丁质是结构相似的多糖,相邻的单体彼此扭转180°,链之间形成氢键,形成微纤维。考生应能将这些分子的性质和结构与其功能联系起来。这应包括溶解度、强度、能量含量和渗透效应。
摘要 关键信息 首次通过 CRISPR/Cas9 介导的淀粉分支酶基因 SBE2 诱变生产高直链淀粉木薯。摘要 高直链淀粉木薯 ( Manihot esculenta Crantz) 适用于淀粉工业应用和生产供人类食用的更健康的加工食品。在本研究中,我们报告了通过 CRISPR/Cas9 介导的淀粉分支酶 2 (SBE2) 诱变生产高直链淀粉木薯。在所有再生植物中均发现了 SBE2 两个目标外显子的突变;这些突变包括核苷酸插入以及 SBE2 基因中的短或长缺失,被分为 8 个突变系。三个突变体 M6、M7 和 M8 在 SBE2 的第二个外显子中有长片段缺失,没有表现出 SBE2 蛋白的积累。从田间收获后,与野生型相比,这些突变体中的直链淀粉(表观直链淀粉含量高达 56%)和抗性淀粉(高达 35%)含量明显较高,导致快速碘染色后淀粉颗粒呈现深蓝色,淀粉粘度改变,糊化温度和峰值时间更高。进一步的 1 H-NMR 分析表明,淀粉支链度显著降低,支链淀粉的短链减少(聚合度 [DP] 15–25),长链增加(DP>25,尤其是 DP>40),这表明木薯 SBE2 在支链淀粉生物合成过程中催化短链的形成。在淀粉中还检测到了从 A 型到 B 型晶体的转变。我们的研究表明,CRISPR/Cas9 介导的木薯淀粉生物合成基因诱变是产生具有有价值的淀粉特性用于食品和工业应用的新品种的有效方法。