为了提高小型绿色蔬菜的智能机械化收获能力,根据其种植模式和农艺要求设计了一种自我推广的绿色蔬菜智能联合收割机。它可以同时满足用于切割,夹紧和输送以及收集小绿色蔬菜的机械化收获操作的要求。此外,该模型还采用了基于BMS技术的纯电动驱动器智能电池管理系统的电动驱动机箱,该系统实现了智能平衡功率。收割机采用了由PLC控制的智能控制系统,以自动检测机器的步行速度,切割机的高度和传输速度等,以实现每个工作零件的快速匹配。发现收割机在两个小时内的电力消耗比例为23%,平均收获效率为0.16Hm²/h。此外,收割机正常运行期间的平均损失率为4.22%。这项研究为智能机械化的小绿色蔬菜提供了参考。
在连续变化(CV)量子物理学中,高斯国家长期以来一直是研究的富有成果的话题[1-10]。它们自然而然地作为热状态形式的许多非相互作用颗粒的系统的基础状态[11],或描述了由激光发出的光的相干状态[3]。通过非线性过程,可以将噪声降低到超过射击噪声限制(以互补可观察到的噪声增加的价格),并产生挤压状态[12-17]。出于Metrol-Ogy的目的,这种挤压状态通常足以获得性能的显着提升[18-21]。在理论上,高斯州相对容易处理[8,9]。高斯智能功能描述了连续变量可观察物的量子统计(例如,量子光学中的四倍)。所有有趣的量子特征都可以从相协方矩阵中推导,该协方差矩阵表征了相位空间上的高斯分布。因此,每当模式的数量仍然有限时,符号矩阵分析的技术就足以研究高斯量子状态。这已经对高斯州的纠缠特性产生了广泛的了解[22-27],最近它也导致了高斯州的量子转向(参见[28])的发展[29-32],我们将其称为Einstein-Podolsky-Podolsky-podolsky-podolsky prosen(Epr)。即使它们具有许多优势,高斯州对
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
几年前电子设备的功率要求很高。但是,随着基于Internet的系统的技术发展,低功率的微电子设备的设计,WSN和IoT设备的设计变得必要。在这些系统中,大小和功率要求很低,在大多数情况下,电池的替代是具有挑战性的。对于这些微电子和物联网设备,丰富的能量收割机非常有用。在不同的丰富能源资源中,用压电悬臂束能量收割机收集振动能量。这项研究工作介绍了能量收割机(EH)的设计和分析,该功能收割机(EH)中包含一个单个压电悬臂梁,该悬挂式横梁捕获了悬架桥的振动能量。这种方法通过将压电能量收获构建为解决低功率设备面临的力量挑战的解决方案,将两件事联系在一起,从而使过渡变得更加自然和连接。设计中的主要挑战是将桥梁的共振频率与压电EH相匹配,该压电EH约为2.5Hz,以提取最大功率。为了克服Comsol多物理学中的特征频率分析。单光束压电EH的3D几何形状是在Comsol多物理固体作品中设计和分析的。在这项研究工作中,基于COMSOL多物理学中的第一个六种特征频率分析,单光束压电频率的几何参数与特征频率之间建立了关系。选择(0.98 m/s²)的力是因为它避免了与关键系统组件共鸣。对于有限元分析(FEA),通过在悬架桥中施加等于振动力(0.98m/ s2)的力来振动压电单光束收割机。收割机的输出的共振频率为2.5Hz。压电的输出为2.5Hz的800毫米伏特非常低。还将压电EH的输出结果与具有单分支结构的悬臂梁进行了比较。
如今,已经为广泛的应用开发了不同类型的能量收割机,其中有压电能量收割机在可穿戴电子产品中显示出很大的潜力,因为它们能够从机械振动或变形等环境来源收集能量。由于提高了效率,灵活性和生物相容性,目前的技术正在利用压电聚合物。在这个项目中,一种简单的方法,即滴铸件,用于制备基于聚(氟化氟化物 - 三氟乙烯)(p(vdf-trfe))的能量收割机。碳酸盐溶剂用于有效地制定P(VDF-TRFE)粉末的稳定墨水。退火和电晕螺栓以增强压电性能。在不同的力和电阻下测量了压电设备的机电性能。带有铂的压电设备,因为顶部电极分别产生高达3.8 V和0.025 µW cm -2的电压和功率密度。结果表明,基于P(VDF-TRFE)基于P(VDF-TRFE)的未来有希望的未来,以柔性,自供电和可穿戴的电子应用中的压电能量收集设备。
在这项研究中,由RF磁铁溅射以不同的ZR/[ZR + Ti]比率而沉积的压电能量收割机(PEHS)是基于外部PB(ZR,Ti)O 3(PZT)薄膜制造的。对于与微电力系统的兼容性,外部PZT薄膜被沉积在SI底物(PZT/SI)上。形态相边界(MPB)的组成范围为0.44≤zr/[Zr + Ti]≤0.51的外观PZT/Si的0.51,其比散装PZT的宽度要广泛得多。同时,使用Unimorph Cansilever方法,通过直接和逆向压电效应评估有效的横向压电系数(| E 31,F |)值。在组成中,Zr/[Zr + Ti]的菱形统治MPB(MPB-R)= 0.51表现出直接| E 31,f |在这项研究中,10.1 C m -2和相对介电常数(𝝐 r)为285,最大程度的功绩为40 GPA。另一方面,最大匡威| E 31,f |从Zr/[Zr + Ti]的四方优势MPB(MPB-T)测量14.0 C m-2的2。在共振频率下,MPB-T在加速度为3 m-1 s-2的加速度下,高输出功率密度为301.5μW-1 /(cm 2 g 2),这对于高表现PEH应用非常有前途。
• Ultra low-power with high-efficiency DC-DC boost converter/charger – Continuous energy harvesting from low-input sources: V IN ≥ 130 mV (Typical) – Ultra-low quiescent current: I Q < 330 nA (Typical) – Cold-start voltage: V IN ≥ 600 mV (typical) • Programmable dynamic maximum power point tracking (MPPT) – Integrated dynamic maximum power point tracking for从各种能源来源(输入电压法规)的最佳能量提取阻止输入来源•存储•可以将能量存储到可充电可充电的锂离子电池,薄膜电池,薄膜电池,超级电容器,超级电容器或常规电容器,或常规电池电量•电池充电和保护型电池•可编程的电池良好的电池 - 拨号级别 - 拨号级别 - 计算机温度 - 拨号级别的温度 - 拨号级别的温度 - 拨号级别的温度 - 拨号级别的温度, PIN - 可编程阈值和磁滞 - 警告附有待处理功率损失的微控制器 - 可用于启用或禁用系统负载
Pharma Innovation Journal 2023; SP-12(8):989-992 ISSN(E):2277-7695 ISSN(P):2349-8242 NAAS评级:5.23 TPI 2023; SP-12(8):989-992©2023 TPI www.thepharmajournal.com接收到:26-05-2023接受:29-06-2023 Barkha Barkha Shakeel可再生能源工程系,技术与工程学院,马哈拉纳省MAHARANA PRATAP UNIGUSER UNICACTION of MAHARANA PRATAP UNICAPER&AMPRIRICULTURE&AMPER&AMPER&AMP;技术,乌代浦,印度拉贾斯坦邦,瓦希德·曼佐尔农业工程技术学院,Sher-e-e-Kashmir农业科学与技术大学,Shalimar,Srinagar,Jammu和印度印度Kashmir,印度印度的Kashmir,作者技术,乌代浦,拉贾斯坦邦,印度
Pharma Innovation Journal 2023; 12(2):2547-2556 ISSN(E):2277-7695 ISSN(P):2349-8242 NAAS评级:5.23 TPI 2023; 12(2):2547-2556©2023 TPI www.thepharmajournal.com收到:17-12-2022接受:21-01-01-2023 Rajender Kumar农业和食品工程系,印度西孟加拉国IIT Kharagpur,印度西孟加拉国IIT Kharagpur,印度Lokesh Kumawat印度西孟加拉邦IIT Kharagpur的Ankit Somra农业和食品工程系,印度曼尼什帕特尔农场机械和动力工程系,农业工程学院,JNKVV,JNKVV,JNKVV,Madhya Pradesh Pradesh Pradesh Pradesh印度印度Ajay Sonjay Somrriagral and Food Engifeering of Kharagpur,iiT Kharagpur,Ink and Idand and India and Ind Idand and India nation。印度西孟加拉邦IIT Kharagpur的农业和食品工程