在这项研究中,由RF磁铁溅射以不同的ZR/[ZR + Ti]比率而沉积的压电能量收割机(PEHS)是基于外部PB(ZR,Ti)O 3(PZT)薄膜制造的。对于与微电力系统的兼容性,外部PZT薄膜被沉积在SI底物(PZT/SI)上。形态相边界(MPB)的组成范围为0.44≤zr/[Zr + Ti]≤0.51的外观PZT/Si的0.51,其比散装PZT的宽度要广泛得多。同时,使用Unimorph Cansilever方法,通过直接和逆向压电效应评估有效的横向压电系数(| E 31,F |)值。在组成中,Zr/[Zr + Ti]的菱形统治MPB(MPB-R)= 0.51表现出直接| E 31,f |在这项研究中,10.1 C m -2和相对介电常数(𝝐 r)为285,最大程度的功绩为40 GPA。另一方面,最大匡威| E 31,f |从Zr/[Zr + Ti]的四方优势MPB(MPB-T)测量14.0 C m-2的2。在共振频率下,MPB-T在加速度为3 m-1 s-2的加速度下,高输出功率密度为301.5μW-1 /(cm 2 g 2),这对于高表现PEH应用非常有前途。
摘要 - 在本文中,提出了一个具有单个二极管装置的环境动力收割机,以同时以混合和合作的方式同时清除射线传频(RF)和热能。理论上通过提出的二极管模型对此合作收获过程进行了检查,然后通过模拟和测量进行验证。在拟议的合作功率收割机中,来自热源的收获直流电压用于偏向二极管,以提高二极管的RF-DC-DC功率转换效率(PCE)。开发了Schottky二极管的准确分析模型,用于指定RF-TO-DC PCE的约束参数,并分别在低RF功率范围(25dbm)中准确预测二极管的性能。发现计算的结果与高级设计系统(ADS)中的谐波平衡模拟器获得的模拟结果达成了良好的一致性。进行示范和验证,根据二极管SMS7630设计和原型设计了拟议的混合合作功率收割机。当二极管的两个注射功率源均为30dbm时,用RF-DC PCE获得了总测量的输出直流电源。此外,具有和不具有匹配网络的Rectennas均已制造和测试。通过消除L匹配网络,发现Rectenna提供更高的直流输出功率。拟议中的混合合作功率收割机希望在带有RF覆盖范围和温度梯度的环境大气中找到潜在的现实世界应用。它不仅有助于产生更高的功率,而且还提供了一种可靠的方法来提高直流电力生产的弹性。
• Ultra low-power with high-efficiency DC-DC boost converter/charger – Continuous energy harvesting from low-input sources: V IN ≥ 130 mV (Typical) – Ultra-low quiescent current: I Q < 330 nA (Typical) – Cold-start voltage: V IN ≥ 600 mV (typical) • Programmable dynamic maximum power point tracking (MPPT) – Integrated dynamic maximum power point tracking for从各种能源来源(输入电压法规)的最佳能量提取阻止输入来源•存储•可以将能量存储到可充电可充电的锂离子电池,薄膜电池,薄膜电池,超级电容器,超级电容器或常规电容器,或常规电池电量•电池充电和保护型电池•可编程的电池良好的电池 - 拨号级别 - 拨号级别 - 计算机温度 - 拨号级别的温度 - 拨号级别的温度 - 拨号级别的温度 - 拨号级别的温度, PIN - 可编程阈值和磁滞 - 警告附有待处理功率损失的微控制器 - 可用于启用或禁用系统负载
如今,已经为广泛的应用开发了不同类型的能量收割机,其中有压电能量收割机在可穿戴电子产品中显示出很大的潜力,因为它们能够从机械振动或变形等环境来源收集能量。由于提高了效率,灵活性和生物相容性,目前的技术正在利用压电聚合物。在这个项目中,一种简单的方法,即滴铸件,用于制备基于聚(氟化氟化物 - 三氟乙烯)(p(vdf-trfe))的能量收割机。碳酸盐溶剂用于有效地制定P(VDF-TRFE)粉末的稳定墨水。退火和电晕螺栓以增强压电性能。在不同的力和电阻下测量了压电设备的机电性能。带有铂的压电设备,因为顶部电极分别产生高达3.8 V和0.025 µW cm -2的电压和功率密度。结果表明,基于P(VDF-TRFE)基于P(VDF-TRFE)的未来有希望的未来,以柔性,自供电和可穿戴的电子应用中的压电能量收集设备。
Nikhlesh Kumar Verma和VM Victor Doi博士:https://doi.org/10.33545/2618060x.2024.v7.i9b.1456在印度,帕迪和小麦摘要是主要的作物,是该国的主要作物,在耕种中排名第一,在Paddy和Wheat中排名第一。减少的农业劳动力从2011-12的54.6%下降到2021 - 22年的45.5%,构成了巨大的挑战,尤其是在劳动收获季节。收获农作物是需要大量劳动的重要农业运作,在收获季节,劳动力的可用性和成本构成了严重的挑战。劳动力短缺和不可预测的天气条件可能会给农民带来巨大损失。因此,采用机械方法来确保及时收获操作至关重要。近年来,机械收集设备的使用增加了。但是,诸如联合收割机之类的机器非常昂贵,这对于大多数小型和边缘农民来说都是无法承受的。尽管已经开发了一些手动操作的收割机,但由于手动功率的局限性,它们尚未获得流行,例如在运输机器运输机器方面的切割和运送农作物和困难。组合收割机也用于此目的,但这些机器消耗柴油燃料。化石燃料的价格每天都在远足。因此,为了确保开发出高效且及时的收获操作行走,在类型的电池供电式收割机后面行走,这在构造,低维护且易于维护方面非常简单。电池带有电池的收割机的重量为121千克。本研究涉及针对小型和边缘农民量身定制的经济高效且环保收获解决方案的需求。开发了一个自旋转的电池供电的收割机,以弥合手动镰刀和昂贵的机械收割机之间的缝隙。这个收割机由900 W DC电动机和四个55 AH,12V电池供电,旨在有效地切割和传达稻田和小麦作物。收割机的主组件包括切割机刀片,电池,直流电机,链条传送带,地面轮,手柄和变速箱系统。它能够将四排稻谷和小麦作物相距22.5厘米。关键字:直流电动机,电池,锯齿状类型切割器刀片,在类型后面步行和收获引言农业是食物的主要来源,是印度广大人口的唯一职业。它确保粮食安全并满足预计到2050年的人口的饮食需求。农业对印度的经济至关重要,占劳动力的54.6%,占2021 - 22年印度GVA的18.6%(匿名,2021年)。印度是全球最大的粮食生产商之一,由多样化的农业部门和有利的气候支持。主要食品谷物包括大米,小麦,玉米,小米(高粱和珍珠小米)和豆类(鹰嘴豆,小扁豆和豆类)。大米和小麦约占全球卡路里摄入量的30%,这对于全球数十亿美元至关重要。这些主食从远古时代开始耕种,在许多饮食中至关重要。印度仅在中国之后才在大米生产中占据第二名。大米主要在亚洲,非洲和拉丁美洲生长,而小麦主要种植在北美,南欧和澳大利亚。小麦对不同气候的适应性使其成为最通用的谷物谷物,而大米是许多发展中国家的主要和最便宜的碳水化合物来源。由于人口增长,全球大米和小麦的消费量正在增加,因此需要增加生产和技术进步。印度也是小麦的第二大生产国,占2020年全球总产量的14.14%。
建立:2010年秋季生物量:•地上生物量(收割机;自2010年以来持续)•地下生物量(2012年2013年4周的生物量,具有4周期间)土壤C-含量:自2010年以来每年一次
本节简要概述了不同的盾牌,它们为其设计的用途以及它们提供的目的:•探索器工具包的能量收集盾牌始终需要连接到探险家工具包才能操作。盾牌被签署,以提供探险家工具箱板上的多协议无线SOC。•双收割机盾牌设计为具有一个或两个能源,一个存储元件,具有或没有输入适配器。要添加外围设备,可以选择将Mikrobus点击板TM与双收割机盾1一起添加到板堆中。•动力学按钮屏蔽提供了无线SOC为无需其他组件提供动力所需的一切。一旦将与设计的固件应用程序相结合,它将只能开箱即用。该板不允许与其他点击板一起进一步堆叠TM
简介:在可穿戴电子产品的快速发展中,它们对外部功率来源的依赖增加了功率费用,同时导致其在充电期间的运行中断。生物力学能量收割机通过将废物动能转换为电力,为自动可穿戴电子产品提供了有希望的解决方案。尽管成功地将其功率输出从μW推进到MW,但几个挑战仍然存在,包括在μA级处的低输出电流,GΩ级别的高内部阻抗和AC输出限制了其实际应用。常规功率管理电路通常在高频收割机中使用,而无需充分考虑产生的能源损失,当使用较低功率输出的低频收割机时,可能会导致电路故障。
但是,18 世纪末和 19 世纪初出现了非技能偏见:“首先是在枪械领域,然后是钟表、泵、锁、机械收割机、打字机、缝纫机,最后是发动机和自行车,可互换零件技术被证明是优越的,取代了熟练工匠用凿子和锉刀工作。”(Mokyr 1990,第 137 页)
1硕士,科学与计算机研究学院,CMR大学,班加罗尔,卡纳塔克邦2 2号科学与计算机研究学院副教授,CMR大学,班加罗尔,卡纳塔克邦,卡纳塔克邦摘要,每天都有能源需求和环境问题的增加,需要可持续的替代方法。噪声污染一直是要担心的话题。因此,我们通过使用压电传感器将其转换为电能来利用噪声或声音。压电传感器使用压电效果将机械能将声波转化为电能。这项技术的潜在应用很多,包括从交通噪音,音乐甚至心跳收获能量。使用了压电能量收集传感器氟化物(PVDF)和锆甲酸铅(PZT)的研究。这些研究中实现的最大功率输出在0.77兆瓦至51.6兆瓦之间变化,具体取决于能量收割机的轮廓和所使用的声源的类型。使用压电传感器进行能源收集具有很大的潜力,可以从环境音源产生可再生能源。关键字:piezoelectric;聚偏二氟;铅锆钛酸铅;可再生能源;环境音源。引言压电材料自19世纪后期以来就以机械应力发电能力而闻名。最近,人们越来越关注使用压电传感器,从包括声波在内的环境机械振动中收集能量。在这项技术的帮助下,有可能提供可再生和可持续的能源,尤其是在噪声污染很高的城市环境中。压电能量收割机背后的基本概念是通过利用压电的材料将机械能(例如声波)转换为电能。当您施加压力(例如声波产生的振动)时,将产生电荷。该电荷可以被捕获并用于电动设备。最近的研究已研究了使用压电传感器从声波收集能量的潜力。这些查询涉及各种元素,例如选择压电材料的选择,能量收割机的构型以及声波的特征,涵盖了频率和振幅。这项研究的目的是微调压电能量收割机的设计以适合特定应用,例如从交通噪声,乐器甚至人体运动中提取能量。本质上,目的是为各种环境优化这些设备。更广泛的目标是建立压电传感器,作为从声波中收集能量的可靠方法,提供可持续和可再生能源。这具有巨大的希望,尤其是在有一个