摘要:用于3D体积生成和重建的生成对抗网络(GAN),例如形状产生,可视化,自动化设计,实时仿真和研究范围,在各个领域都受到了更多的关注。但是,诸如有限的培训数据,高计算成本和模式崩溃问题之类的挑战持续存在。我们建议将变异自动编码器(VAE)和gan结合起来,以发现增强的3D结构,并引入一种稳定且可扩展的渐进式增长方法,以生成和重建基于体素的基于体素的3D形状。级联结构的网络涉及生成器和鉴别器,从小型体素大小开始,并逐步添加图层,同时在每个新添加的层中使用地面标签监督歧视器,以建模更广阔的体素空间。我们的方法提高了收敛速度,并通过稳定的增长来提高生成的3D模型的质量,从而促进了复杂的体素级详细信息的准确表示。通过与现有方法的比较实验,我们证明了方法在评估体素质量,变化和多样性方面的有效性。生成的模型在3D评估指标和视觉质量中表现出提高的准确性,使它们在包括虚拟现实,元评估和游戏在内的各个领域都很有价值。
摘要。相位模型(例如Allen-CaHn方程)可能会引起几何形状的形成和演变,这种现象可以在适当的缩放方案中进行严格分析。在其尖锐的界限限制下,已经猜想了具有n 3不同最小值的电势的矢量allen-cahn方程,以通过多相平均曲率流量来描述分支接口的演变。在目前的工作中,我们在两个和三个环境维度和适当的一类潜在的情况下给出了严格的证据:只要存在多态度平均曲率流的强大解决方案,就可以解决矢量allen-cahn方程,并具有良好的初始数据汇总到多型固定固定构型固定端口的限制范围内的范围范围范围的弯曲范围范围范围的范围,我们甚至建立了收敛速度。”1 = 2 /。我们的方法基于Allen-Cahn方程的梯度流结构及其限制运动:基于用于多相平均曲率流的最新概念“梯度流校准”的概念,我们引入了矢量allen – Cahn方程的相对熵的概念。这使我们能够克服其他方法的局限性,例如避免需要对艾伦 - 卡纳操作员进行稳定性分析,或在积极时为能量的其他收敛假设。
本文提供了对Combettes和Pesquet [4]引起的tseng型拆分算法的定量分析,用于同时解决原始问题以及双包容性问题,两者都使用非常通用的复合操作员进行配制,均使用非常普遍的复合操作员,涉及涉及单线性组合和平行式和平行的单位元素的混合物。具体而言,我们表明,如果所涉及的操作员的个别总和是统一的单调,那么对于由算法产生的序列的个体组件的强收敛来说,具有简单的同时收敛速度,该算法分别与原始和双重包容性问题相对应(仅在某些方面),仅在某些方面依赖(正常的),这是在某些方面的依赖(正常的)。关于启动参数,该方法中涉及的误差项和模量的融合率见证了操作员的均匀单调性(在[8]的意义上)(参见定理4.7)。没有任何均匀的单调性假设,算法会弱收敛(如[4]所示),但即使在有限的尺寸情况下,通常也没有可计算的收敛速率,因为人们可以使用Specker引起的可计算理论的结果来显示[15](另请参见[10,13]中的讨论)。在这种情况下,下一个最好的事情是构建有效的序列(x n)的效率所谓的亚愿速率,即在表达式1
联邦学习 (FL) 是一种新兴的机器学习技术,它支持跨数据孤岛或边缘设备进行分布式模型训练,而无需数据共享。然而,与集中式模型训练相比,FL 不可避免地会带来效率低下的问题,这将进一步增加未来机器学习本已很高的能耗和相关的碳排放。减少 FL 碳足迹的一种方法是根据电网中特定时间和地点可能出现的可再生过剩能源的可用性来安排训练作业。然而,面对如此不稳定且不可靠的资源,现有的 FL 调度程序无法始终确保快速、高效和公平的训练。我们提出了 FedZero,这是一个专门依靠可再生过剩能源和计算基础设施的闲置容量运行的 FL 系统,可有效地将训练的运营碳排放量降至零。通过利用能源和负荷预测,FedZero 通过选择客户端实现快速收敛和公平参与,从而利用过剩资源的时空可用性。我们基于实际的太阳和负载轨迹进行的评估表明,在上述约束条件下,FedZero 的收敛速度明显快于现有方法,同时消耗的能量更少。此外,它对预测误差具有很强的鲁棒性,可扩展到数万个客户端。
联邦学习 (FL) 是一种新兴的机器学习技术,它支持跨数据孤岛或边缘设备进行分布式模型训练,而无需数据共享。然而,与集中式模型训练相比,FL 不可避免地会带来效率低下的问题,这将进一步增加未来机器学习本已很高的能耗和相关的碳排放。减少 FL 碳足迹的一种方法是根据电网中特定时间和地点可能出现的可再生过剩能源的可用性来安排训练作业。然而,面对如此不稳定且不可靠的资源,现有的 FL 调度程序无法始终确保快速、高效和公平的训练。我们提出了 FedZero,这是一个专门依靠可再生过剩能源和计算基础设施的闲置容量运行的 FL 系统,可有效地将训练的运营碳排放量降至零。通过利用能源和负荷预测,FedZero 通过选择客户端实现快速收敛和公平参与,从而利用过剩资源的时空可用性。我们基于实际的太阳和负载轨迹进行的评估表明,在上述约束条件下,FedZero 的收敛速度明显快于现有方法,同时消耗的能量更少。此外,它对预测误差具有很强的鲁棒性,可扩展到数万个客户端。
量子态设计通过实现随机量子态的有效采样,在设计和基准测试各种量子协议中发挥着重要作用,其应用范围广泛,从电路设计到黑洞物理。另一方面,对称性有望降低状态的随机性。尽管对称性无处不在,但它对量子态设计的影响仍然是一个悬而未决的问题。最近引入的投影集合框架通过结合投影测量和多体量子混沌来生成高效的近似状态 t - 设计。在这项工作中,我们研究了从表现出对称性的随机生成器状态中状态设计的出现。利用平移对称性,我们通过分析建立了导致状态 t - 设计的测量基础的充分条件。然后,通过利用迹距离测量,我们通过数值研究了设计的收敛性。随后,我们检查了充分条件的违反情况,以确定无法收敛的基。通过研究具有平移对称性的混沌倾斜场伊辛链的动力学,我们进一步证明了物理系统中状态设计的出现。与对称性破坏的情况相比,我们发现在早期时间演化过程中迹线距离的收敛速度更快。为了描述我们结果的普遍适用性,我们将分析扩展到其他对称性。我们希望我们的发现能够为进一步探索封闭和开放量子多体系统的深度热化和平衡铺平道路。
摘要。相位模型(例如Allen-CaHn方程)可能会引起几何形状的形成和演变,这种现象可以在适当的缩放方案中进行严格分析。在其尖锐的界限限制下,已经猜想了具有n 3不同最小值的电势的矢量allen-cahn方程,以通过多相平均曲率流量来描述分支接口的演变。在目前的工作中,我们在两个和三个环境维度和适当的一类潜在的情况下给出了严格的证据:只要存在多态度平均曲率流的强大解决方案,就可以解决矢量allen-cahn方程,并具有良好的初始数据汇总到多型固定固定构型固定端口的限制范围内的范围范围范围的弯曲范围范围范围的范围,我们甚至建立了收敛速度。”1 = 2 /。我们的方法基于Allen-Cahn方程的梯度流结构及其限制运动:基于用于多相平均曲率流的最新概念“梯度流校准”的概念,我们引入了矢量allen – Cahn方程的相对熵的概念。这使我们能够克服其他方法的局限性,例如避免需要对艾伦 - 卡纳操作员进行稳定性分析,或在积极时为能量的其他收敛假设。
联合学习(FL)是一种在不共享原始本地数据的情况下培训Edge Computing(EC)中多个客户端的AI模型的有前途的方法。通过启用本地培训并将更新汇总到全球模型中,FL在促进协作学习的同时保持隐私。从未有过,FL遇到了一些挑战,包括您的客户参与,由于患有恶意或不准确的模型而导致的客户效率低下的模型聚合。在本文中,我们提出了一种可信赖的FL方法,该方法结合了Q学习,信任和声誉机制,增强了模型的认可和公平性。此方法促进客户参与,减轻恶意攻击的影响并确保公平的模型分布。受强化学习的启发,Q学习算法使用Bellman方程优化了客户选择,从而使服务器能够平衡探索和开发,以改善系统性能。更重要的是,我们探索了点对点fl设置的优势。广泛的实验证明了我们提出的可信赖的FL方法在实现高学习准确性方面的有效性,同时确保客户之间的公平性并保持有效的客户选择。我们的结果揭示了模型性能,收敛速度和概括方面的显着改善。
摘要 - 从环境友好性和能源效率的角度来看,电动汽车(EV)对传统汽油汽车构成威胁。可以通过预测与电动汽车充电的状态的预测来帮助确定电动汽车用户的未来充电需求。它可能会根据用户的实时位置提供自定义的充电容量统计信息,并指导收费基础架构的操作和管理。因此,出现的问题是电动汽车充电状态预测的有效模型。在这项研究中,建议采用混合深度学习方法,以确保安全可靠的充电操作,以防止电池被过度充电或排放。建议用于特征提取过程的递归神经网络(RNN),以获取电池上足够的功能信息。然后,研究建立了双向门控复发单位框架(GRU),以预测EV的状态。GRU从RNN的输出中获得了其输入,从而大大提高了模型的有效性。由于其简单得多的结构,RNN-GRU具有较低的计算性能。实验发现证明了GRU方法准确跟踪电动汽车行驶里程的能力。与广泛的现实世界测试所证明的相比,基于混合的深度学习预测方法可以使快速收敛速度较小的错误率较小的错误率。
摘要 - 许多现实世界的应用程序可以作为多机构合作问题,例如网络数据包路由和自动驾驶汽车的协调。深入增强学习的出现(DRL)通过代理和环境的相互作用为多机构合作提供了一种有希望的方法。然而,传统的DRL解决方案在策略搜索过程中遭受了具有连续动作空间的多个代理的高维度。此外,代理政策的动态性使训练非平稳。为了解决这些问题,我们建议采用高级决策和低级个人控制,以进行有效的政策搜索。特别是,可以在高级离散的动作空间中学习多种代理的合作。同时,低级个体控制可以减少为单药强化学习。除了分层增强学习外,我们还建议对手建模网络在学习过程中对其他代理的政策进行建模。与端到端的DRL方法相反,我们的方法通过以层次结构将总体任务分解为子任务来降低学习复杂性。为了评估我们方法的效率,我们在合作巷更改方案中进行了现实世界中的案例研究。模拟和现实世界实验都显示了我们在碰撞速度和收敛速度中的优越性。索引条款 - 多机构合作;深入的强化学习;分层增强学习