摘要:路径计划是机器人技术领域的重要研究方向;但是,随着现代科学和技术的发展,对机器人研究领域的有效,稳定和安全的路径规划技术的研究已成为现实的需求。本文介绍了一种改进的麻雀搜索算法(ISSA),并采用了融合策略,以进一步提高解决挑战性任务的能力。首先,用圆形混沌映射初始化了麻雀种群,以增强多样性。第二,在探索阶段使用了北陀螺仪的位置更新公式,以替换安全情况下的Sparrow Search Algorithm的位置更新公式。这改善了发现者模型在解决方案空间中的搜索广度,并优化了解决问题的效率。第三,该算法采用了Lévy飞行策略来提高全球优化能力,因此在迭代的后期,麻雀会跳出本地最佳。最后,自适应T分布突变策略在后期迭代中增强了局部勘探能力,从而提高了麻雀搜索算法的收敛速度。将其应用于CEC2021函数集,并将其与其他标准智能优化算法进行比较以测试其性能。此外,ISSA是在移动机器人的路径规划问题中实施的。比较研究表明,就路径长度,运行时间,路径最佳性和稳定性而言,所提出的算法优于SSA。结果表明,在移动机器人路径计划中,所提出的方法更有效,健壮和可行。
远程网络节点共享的量子纠缠是有望在分布式计算,加密和感应中应用的宝贵资源。然而,由于纤维中的各种反矫正机制,通过填充途径分发高质量的纠缠可能是具有挑战性的。尤其是,光纤维中的主要极化解相机制之一是极化模式分散(PMD),这是通过随机变化的双向反射方式对光脉冲的失真。为了减轻纠缠颗粒中的分解作用,已经提出了量子纠缠蒸馏(QED)算法。一个特定类别的QED算法的一个特定类别之所以脱颖而出,是因为它在所涉及的量子电路的大小和粒子之间的纠缠初始质量上都具有相对放松的要求。但是,由于所需颗粒的数量随着蒸馏弹的数量而成倍增长,因此有效的复发算法需要快速收敛。我们提出了一种针对受PMD降级通道影响的光子量子置量对的复发QED算法。我们提出的算法在每一轮蒸馏中都实现了最佳的确定性以及最佳成功概率(根据实现最佳限制的事实)。最大化的实现可提高从线性到二次的蒸馏弹数,从而提高了效能的收敛速度,因此显着减少了回合的数量。结合了达到最佳成功概率的事实,所提出的算法提供了一种有效的方法,可以通过光纤维具有很高的纠缠状态。
摘要这项研究提出了一种新型的杂交元神经算法,正弦辅助教学学习学习的优化(SCATLBO),旨在训练用于单声道和多模式医学图像注册的喂养前进神经网络(FNNS)。scatlbo结合了正弦骨算法(SCA)的优势,用于探索基于教学学习的优化(TLBO),以实现剥削,达到了平衡,从而增强了算法能力,以避免局部最小值并提高逆转率。医学图像注册,对于准确的医学分析必不可少的,从这种混合方法中受益,因为它有效地对齐了复杂的多模式图像。在这项工作中,SCATLBO用于训练来自癌症基因组乳房侵入性癌(TCGA-BRCA)数据集的乳房MRI图像。SCATLBO的性能是针对几种众所周知的元启发式算法的基准测试,包括TLBO,粒子群优化(PSO),蚂蚁菌落优化(ACO),灰狼优化器(GWO)和进化策略(ES),以及基于平均平方误差(MSE)的评估(MIS)和杂音的评估(MI)。实验结果表明,SCATLBO在准确性,收敛速度和稳健性方面优于其他技术,将其确立为基于神经网络的图像注册任务的有前途的工具。这项工作有助于提高FNN的元启发式培训方法,并在各种医学成像领域中使用了潜在的应用。
摘要:种植电动汽车(EV)所有权导致充电站的增加,这增加了负载需求并在高峰时段引起电网中断。微电网可以通过实施有效的能源管理方法来重大解决电气分配系统中的这些问题。建议的混合优化方法旨在提供恒定的力量,无论产生差异如何,并应防止存储设备的早期恶化。这项研究建议使用基于模糊的拼音搜索算法(SSA)的动态控制系统为微网(MG)操作提供可靠的功率平衡。设计和评估了所提出的DC微电网整合可再生能源(RES)和电池存储系统(BSS)(BSS),并使用MATLAB Simulink Simulation进一步验证了发现。将混合SSA策略与最广泛使用的粒子群优化(PSO)的功率管理进行比较时,观察到混合SSA方法在收敛速度和稳定性方面是优越的。使用两种不同的模式,太阳照射的变化和电池电荷状态的变化,确保了微电网的成本效益的操作,评估了给定能量管理系统的有效性。增强的响应特征表明,模糊SSA可以优化DC微电网的功率管理,从而更好地利用能源。这些结果表明,与PSO相比,DC微电网中算法配置对DC微电网中具有成本效益的电力管理的相关性,因为它可以节省大约7.776%的电费。
现今随着高通量测序技术的飞速发展,微生物群落分析受到越来越多的关注。观测数据具有以下典型特征:高维、成分复杂(处于单纯形状态),甚至由于种类过于丰富而呈现尖峰性和高度偏斜性,这使得传统的相关性分析无法研究微生物种类之间的共现和共排斥关系。在本文中,我们解决了该类数据的协方差估计难题。假设基协方差矩阵位于一类公认的稀疏协方差矩阵中,我们采用文献中称为中心对数比协方差矩阵的代理矩阵,由于维数趋向于无穷大,因此它与真实的基协方差矩阵几乎无法区分。我们为中心对数比协方差矩阵构建了一个均值中位数 (MOM) 估计量,并提出了一种可适应各个条目变化的阈值处理程序。通过施加一个比文献中的亚高斯条件弱得多的有限四阶矩条件,我们推导出谱范数下的最佳收敛速度。此外,我们还为支持恢复提供了理论保证。MOM 估计量的自适应阈值处理程序易于实现,并且在存在异常值或重尾时具有稳健性。进行了彻底的模拟研究,以显示所提出的程序优于一些最先进的方法。最后,我们应用所提出的方法来分析人类肠道中的微生物组数据集。用于实现该方法的 R 脚本可在 https://github.com/heyongstat/RCEC 获得。
摘要:光伏 (PV) 能源的使用最近因其可再生性而受到广泛关注。然而,仍然存在一些挑战,特别是在准确设计 PV 系统方面。在离网 PV 系统中,适当选择 PV 电池和电池存储的尺寸对于提高效率和系统可靠性至关重要。该项目重点关注尼日利亚北部的 Gubio 村,该村计划建立一个结合风能、光伏和柴油发电的独立系统。主要目标是确定案例研究中 PV 模块和电池尺寸的最佳数量。在理想的测试条件下,使用 MATLAB 模拟对所提出的系统进行了测试,同时考虑了辐照度模式的变化和与系统相关的其他不确定性。还概述了 PV、电池、风力涡轮机和柴油组件的搜索范围及其目标函数。在本项目中,比较了遗传算法 (GA)、粒子群优化 (PSO) 和差分进化 (DE) 算法,以确定 Gubio 村离网 PV、风力涡轮机和柴油系统的最佳尺寸。优化结果表明,PSO 在成本和收敛时间方面提供了最佳解决方案,供电损失概率 (LPSP) 最低,平准化能源成本 (LCOE) 最高,分别为 0.012 和 0.3564。与 DE 和 GA 相比,PSO 算法效率更高,由于收敛速度更快,所需的计算时间和内存更少。因此,该项目通过为尼日利亚博尔诺州的古比奥村设计混合光伏/风能/柴油电池发电系统成功实现了其目标。关键词:光伏 (PV) 能源;离网光伏系统;优化算法;混合发电。
摘要 — 从计算机断层血管造影 (CTA) 体积中分割颅内血管是诊断和治疗脑血管疾病的有前途的生物标志物。这些分割输出是开发用于神经病理学术前评估或术中指导的自动决策支持系统的基本要求。最先进的医学图像分割方法依赖于基于卷积神经网络的深度学习架构。然而,尽管它们很受欢迎,但在当前的深度学习架构中仍存在研究差距,这些架构经过优化以应对血管分割的技术挑战。这些挑战包括:(i) 提取靠近颅骨的具体脑血管;(ii) 精确标记血管位置。我们提出了一种优化融合的全端到端网络 (OFF-eNET) 用于自动分割体积 3D 颅内血管结构。OFF-eNET 由三个模块组成。在第一个模块中,我们利用上行连接来增强信息流,并利用扩张卷积来详细保存专为细血管设计的空间特征图。在第二个模块中,我们采用残差映射和初始模块来加快网络收敛速度并提供更丰富的视觉表示。对于第三个模块,我们利用级联训练策略形式的迁移知识来逐步优化三个分割阶段(基础、完整和增强)来分割靠近头骨的细血管。所有这些模块都设计为计算效率高。我们的 OFF-eNET 使用 70 个 CTA 图像体积进行评估,在颅内血管分割中的表现为 90.75%,优于最先进的同类产品。
摘要:可再生能源生成器(REG)单位的最佳计划有助于满足未来的电力需求,并提高灵活性。因此,本文提出了一种基于遗传算法(GA)的混合组合(GA)和使用分析功率流方程的溶液,以最佳的量和放置电力系统网络中的REG单元的位置。GOGA的目标是系统损失最小化和灵活性改善。使用KRON方程,目标函数表示系统损失是不同发电机生成的功率的函数。基于电压偏差和系统损耗,提出了一种灵活性指数(FI)来评估灵活性的改善。在测试系统的各种总线上放置REG之后,将执行功率流量运行,并计算系统损耗,这被认为是染色体纯度值。GOGA通过更改REG单元的位置来搜索拟合度函数的最低值。交叉,突变和替换算子来生成新的染色体,直到根据REG的大小和位置获得最佳解决方案为止。在印度的Rajasthan Rajya Vidyut Prasaran Nigam Ltd.(RVPN)的Rajasthan Rajya Vidyut Prasaran Nigam Ltd.(RVPN)的一部分的一部分进行了一项研究。使用线性拟合模型计算了10年时间范围的载荷预测。进行了成本 - 固定分析,并确定拟议的GOGA提供了一种可行的可行解决方案,具有提高的灵活性。确定GOGA可确保高收敛速度和良好的解决方案准确性。此外,与常规GA相比,GOGA的性能优越。
许多现实世界的优化问题,尤其是工程优化问题,都涉及约束条件,这使得寻找可行解变得十分困难。许多研究人员已经针对受约束的单目标和多目标优化问题研究了这一挑战。具体而言,本研究扩展了 Gandomi 和 Deb(《计算机方法与应用机械工程》363:112917, 2020)提出的用于约束优化问题的边界更新 (BU) 方法。BU 是一种隐式约束处理技术,旨在通过迭代削减不可行搜索空间,从而更快地找到可行区域。这样做会扭曲搜索空间,使优化问题更具挑战性。为此,我们实施了两种切换机制,当找到可行区域时,将景观连同变量一起转换为原始问题。为了实现这一目标,我们考虑了两个阈值,分别代表不同的切换方法。在第一种方法中,当约束违规达到零时,优化过程将转换为不使用 BU 方法的状态。在第二种方法中,当目标空间不再发生变化时,优化过程将转入不使用 BU 方法的优化阶段。为了验证该方法的有效性,我们考虑使用著名的进化单目标和多目标优化算法来解决基准测试和工程问题。本文分别在整个搜索过程中使用和不使用 BU 方法对所提出的方法进行了基准测试。结果表明,该方法可以显著提高收敛速度,并能够更好地解决约束优化问题。
由于传统能源资源的枯竭、温室气体排放、气候变化等,基于可再生能源 (RER) 的发电正成为当前和未来电力行业的主要来源。主要的 RER,包括太阳能、风能和小型水电,可在智能电网环境中提供可靠且可持续的解决方案。基于太阳能和风能的发电更为普遍,但性质各异,甚至无法非常有效地预测。因此,有必要整合两个或更多 RER 并开发混合能源系统 (HES)。HES 提供经济高效且可靠的电源,同时减少和/或几乎可以忽略不计的温室气体排放。出于经济和电力可靠性方面的考虑,组件的最佳尺寸对于开发最佳 HES 是必不可少的。近年来,元启发式进化算法已被广泛用于 HES 的最佳尺寸。哈里斯霍克优化器 (HHO) 是一种最近设计的元启发式搜索方法,能够发现全局最小值和最大值。然而,由于其开发能力较弱,基本 HHO 算法的局部搜索相当慢,收敛速度也较慢。因此,为了加速 HHO 的开发阶段,本研究开发了一种新方法,即以随机探索性搜索为中心的哈里斯霍克优化器 (hHHO-ES),用于优化 HES 的大小。针对各种众所周知的基准函数(包括单峰、多峰和固定维度),验证了建议的方法并将其与现有的优化方法进行了比较。随后,该方法被用于开发 HES,它将能够为电网供应稀缺的偏远地区提供电力。在一系列约束(例如系统组件的界限和可靠性)下,使用净现值 (NPC) 作为主要函数来制定目标函数。将获得的结果与和声搜索(HS)和粒子群优化(PSO)的结果进行了比较,发现其效果更佳。