解构木质素时的主要目标是实现有用的产品或中间体的高收益,同时使不良副产品的形成成立,事实证明这是具有挑战性的。11要实现木质素向低分子量化合物的高转化,因此必须打破C - C键。12,13,例如,还原性催化分数(RCF)在很大程度上切割了C-C键完整14,芳香族单体的产量限制为15-30%。可以通过在高温和高压下的催化来实现木质素中的C - C键,但成本相对高。这激发了对替代方法的探索。在先前的工作中,我们报告了一种在环境温度或接近木质素中断裂C - C键的替代方法。这种方法将硫化与芬顿化学的解构结合在一起。在芬顿反应中,Fe 2+与过氧化氢反应,产生Fe 3+和高效的羟基自由基。17 - 19个先前的工作表明,芬顿反应产生的羟基自由基有效地裂解C - C键在磺酸聚合物(如木质磺酸盐)中,20,21种磺化聚乙烯,22和聚苯乙烯硫酸盐。23 - 25通过将硫基团添加到固定铁中,将氧化量反应定位于底物,从而导致这些聚合物有效分解至低分子量产物。Fenton反应在环境温度和大气压下进行。与需要能源密集型过程和高压反应器的方法相比,这是一个优势。此外,由于芬顿反应发生在水中,少量生物相容性铁作为催化剂,因此在生物转化之前几乎不需要后期处理。可以通过调整反应条件和试剂量(铁和H 2 O 2)来控制芬顿反应中实现的解构程度。可以对低分子量产物产物进行广泛的解剖,但是在解构的程度与通过过度氧化对挥发性化合物(例如CO 2)损失的碳量之间存在贸易。过度氧化还通过更大的氧化剂H 2 O 2的消耗导致成本增加。在这里,我们探索了来自Poplar的木质素的解构,Poplar是一种相关的生物能源原料,与用离子液体过程产生的富含糖流相关的26 a a e er分离。27我们先前的工作后,我们首先将杨树木质素磺化。28接下来,我们使用Fenton反应将磺化的木质素解散,表明我们可以通过不同的试剂浓度来控制解结和重聚的程度。然后,我们探索了分解产物的生物学可用性,并证明了分解产物向喷射燃料前体Bisabolene的转化。这项工作的目标是在整个过程中展示原理证明,包括转换为产品。下面我们报告结果并讨论了几个想法,以提高过程中每个步骤的收率。
微生物生产颜料及其在食品和化妆品行业中的应用Pooja Mistry 1,Trupti Pandya 2 Bhagwan Mahavir基础和应用科学学院摘要:某些合成染料的负面影响正在推动对自然色的需求。细菌和真菌色素提供了一种自然产生的颜色的方便替代供应。它们比其他天然颜料具有许多优势,例如快速开发,简单处理和对天气的免疫力。该研究的主要目标是分离产生土壤的色素细菌。使用多种纯培养技术维持孤立的菌落。颜料可以放大许多应用中使用的颜色的现有调色板。最大颜料产量的各种参数是环境和健康问题,相比之下,微生物颜料是环保的,并在纺织工业中使用,微生物来源的色素是一个很好的选择,可以很容易地以高收率产生。被称为颜料的化学物质负责吸收可见光。称为颜料的化合物经常在业务中使用。由于它们的无毒构成,某些微生物制造颜色用于药品,化妆品,食品,染料和其他工业用途,因此对环境有益。天然食品着色剂是由微生物商业生产的。发酵提供了几种好处,包括更便宜的生产和简单的提取;改善的菌株可产生与季节无关的大量基本材料供应。(Rymbai等,2011)。关键字:微生物色素,土壤样品,细菌,纺织品和染料1。简介合成色优于稳定性,易于应用和成本效益的天然色素。近年来,天然色素是从食品,染料,化妆品和药品制造实践中分离出来的(Sanjay等,2007)。自然色素的主要来源是从动物,植物(Joshi等,2003)和微生物(Nagpal等,2011)获得的。微生物是可生物降解,可再生,环保的,并以其在纺织品染色,食物成分,化妆品和药物方面的用途而闻名(Shahid等,2013)。微生物的发展可以通过强大的状态来培养,并降低了原油或现代自然废物的特征。微生物可以在适度的培养基中有效发展,并快速速度,它们的发展是气候条件的自主。微生物产生多种色素包括聚酮化合物,类胡萝卜素,苯乙烯,酰基苯酚,吡咯和蒽醌,但这些颜料大多数除了类胡萝卜素和聚酮化合物(Stich等人,2002年)都对人有毒。食物材料的新鲜度是由其安全性和颜色表示的,也表现出良好的感官和美学价值。细菌色素因其对人类和环境的无害影响而使用(Ahmad等,2012)。在食品行业中纯化的微生物色素用作食品添加剂,具有抗氧化剂,颜色增强剂等特性。微生物是有机酸,酶,维生素,氨基酸和有机酸的良好来源。从微生物来源中提取色素,然后将其用作食用色素是合成染料的绝佳替代品(Malik等人,等等,2012年)。在易于使用的廉价培养基中,细菌物种创造的主要好处是快速,易于生长,完全没有大气条件。
日本卡纳那川 - 2023年12月22日 - peptidream Inc.(总裁:帕特里克·C·里德(Patrick C. subsidiary of PeptiDream, has entered into a strategic partnership with LinqMed Inc. (President: Yukie Yoshii, Headquarters: Chiba-shi, Chiba, Japan, “LinqMed”) for the clinical development, regulatory filing and commercialization in Japan of 64 Cu-ATSM, a targeted radiotherapeutic for the potential treatment of malignant brain tumors.放射性疗法64 Cu-ATSM是一种小分子二乙酰基双(N 4-甲基硫代性氨基苯巴酮),与放射性同位素铜64(64 CU)偶联。大多数肿瘤在肿瘤内部和周围周围产生缺氧的微环境,这是由于迅速增殖的肿瘤细胞的消耗增加,并且由于肿瘤血管生成而引起的氧气供应不足,并且由于异常而导致的氧气供应不足,而64个CU-ATSM在这些低氧肿瘤微环境中定位于这些较低的肿瘤损伤,并构成了64个Cuunotient in IRRERIC,该损害是64 cusaigention tht Wht tht tht tht tht cu-cuunotic prognotial in IRRERIS in IRRERIC,该损害均可供应。导致肿瘤细胞死亡。 在日本,每年有大约4,000 - 5,000例新的神经胶质瘤病例,5年总生存率(OS)率为15.5%,中位OS为18个月,复发率为51%。 目前尚无对这些复发性恶性脑肿瘤患者的有效或已建立的治疗方法,这些脑肿瘤已被证明是无效的。 预计完成的研究将在2024年上半年读取。大多数肿瘤在肿瘤内部和周围周围产生缺氧的微环境,这是由于迅速增殖的肿瘤细胞的消耗增加,并且由于肿瘤血管生成而引起的氧气供应不足,并且由于异常而导致的氧气供应不足,而64个CU-ATSM在这些低氧肿瘤微环境中定位于这些较低的肿瘤损伤,并构成了64个Cuunotient in IRRERIC,该损害是64 cusaigention tht Wht tht tht tht tht cu-cuunotic prognotial in IRRERIS in IRRERIC,该损害均可供应。导致肿瘤细胞死亡。在日本,每年有大约4,000 - 5,000例新的神经胶质瘤病例,5年总生存率(OS)率为15.5%,中位OS为18个月,复发率为51%。目前尚无对这些复发性恶性脑肿瘤患者的有效或已建立的治疗方法,这些脑肿瘤已被证明是无效的。预计完成的研究将在2024年上半年读取。第1阶段的开放标签介入剂量升级安全性研究已在国家癌症中心(JRCT2091220362)进行,对复发性恶性脑肿瘤(胶质母细胞瘤,胶质母细胞瘤,PCNSL和/或恶性脑膜瘤)的患者已经进行。该研究的主要结果是确定剂量限制毒性(DLT)的发生,并在确定反应率,无进展生存率(PFS)的次要结果,通过内部暴露评估,不良事件的表达,不良事件,类固醇非接收率和Karnofsky绩效状态(KARNOFSKY绩效状态(KPS KPS)估计有效剂量。通过这种合作伙伴关系,Linqmed将继续领导64个Cu-atsm和Pdradiopharma的开发活动,将领导日本的监管申请和商业化活动。根据《战略合作协议》,两家公司将分享日本64 CU-ATSM的开发和商业化的成本和利润。此外,peptidream还参加了Linqmed最近的系列A,现在是Linqmed的股东。
资产类是具有类似属性的金融工具,例如现金,货币市场,股票或债券。资产类别对于按投资类型对资金进行分类很重要。分配或股息是基金向拥有分配股票类别(带付款的车厢)的投资者支付的。分配(或股息)收益率是在过去12个月中所有支出的计算,除以每股价格(通常是最新的NAV),并且可能会受到可变支付季节性的影响。基金的分配政策将其股票类别的股息分配给投资者。累积股份级别将从基金持股收到的收入重新投资回到基金中,而不会分配给股东。分配股票通常会定期向股东支付现金。持续时间或Macaulay持续时间,表明投资者需要维持债券的职位数年,直到债券现金流量的现值等于债券支付的金额为止。持续时间越长,债券的价格就会受到利率变化的影响。持续时间也可用于比较债务证券的风险不同。环境,社会和治理(ESG)标准是一组指标或评级,用于将潜在投资用于可能影响财务绩效和/或对环境和社会产生重大影响的问题。ESG指标是出于信息目的,可能不是基金投资过程的一部分。股权敞口说明了投资于股票(股票)的基金的比例,通常以百分比形式表达。ESG评级由MSCI提供,旨在衡量公司对财务相关的ESG风险和机会的管理。 他们使用基于规则的方法来确定行业领导者和落后者,并根据他们对ESG风险的暴露以及相对于同行的管理如何管理这些风险。 MSCI的ESG等级范围从领导者(AAA,AA),平均(A,BBB,BB)到Laggard(B,CCC)。 ESG得分由MSCI提供,是对公司可持续性水平的衡量。 计算基于许多因素,并且在量表范围内进行了衡量,例如 从0(非常差)到10(非常好)。 远期或远期合同是两方之间的协议,以在未来日期以指定价格购买或出售资产,并且经常用于套期保值或商品交易,可以将远期合同定制为金额,交付日期和商品类型(例如ESG评级由MSCI提供,旨在衡量公司对财务相关的ESG风险和机会的管理。他们使用基于规则的方法来确定行业领导者和落后者,并根据他们对ESG风险的暴露以及相对于同行的管理如何管理这些风险。MSCI的ESG等级范围从领导者(AAA,AA),平均(A,BBB,BB)到Laggard(B,CCC)。ESG得分由MSCI提供,是对公司可持续性水平的衡量。计算基于许多因素,并且在量表范围内进行了衡量,例如从0(非常差)到10(非常好)。远期或远期合同是两方之间的协议,以在未来日期以指定价格购买或出售资产,并且经常用于套期保值或商品交易,可以将远期合同定制为金额,交付日期和商品类型(例如食物,金属,石油或天然气)。未来或期货合约是一项法律协议,即以预定的价格在未来的时间点以预定的价格购买或出售特定的商品资产,货币或证券。它们是质量和数量的标准化合同,可促进在期货交易所进行交易。isin(国际证券识别号)是一个唯一标识特定财务安全的代码。它是由一个国家各自的国家编号局(NNA)分配的。对于大多数资金,每天都会计算和报告。修改后的持续时间是Macaulay持续时间的调整后版本,并衡量由于收率变化而导致债券价格变化的百分比变化。它用于测量债券现金流对利率变化的敏感性,并且比Macaulay持续时间更常用。净资产价值(NAV) /股份也称为基金的股价,代表基金的每股价值。它是通过将基金的资产减少其负债除以未偿还的股份来计算的。持续的费用表示持续运行基金的成本总和,例如管理费以及各种法律和运营成本。它是在12个月内追溯计算的,占基金资产的百分比。如果可用数据不足,例如,对于新推出的资金,可以使用具有相似特征的资金的数据来估算持续的费用。选项是一种衍生品金融工具,其价格来自基础证券(如股票)的价值。致电/投票期权赋予买家以约定的价格和日期购买/出售基础资产的权利(但没有义务)。共享类是具有不同客户类型,分配政策,费用结构,货币,最低投资或其他特征的基金的隔间。基金招股说明书中描述了每个股份类别的特征。Sharpe比率测量每单位风险的多余回报。比率是平均收益超过每单位波动率的无风险率的回报。具有较高尖锐比率的投资组合相对于其同龄人而言被认为是优越的。Valor是由六个财务信息发布的标识号,并分配给瑞士的金融工具。波动率在一定时期内衡量基金绩效的波动。最常使用年度标准偏差表示。波动性越高,基金往往越风险。加权平均碳强度(WACI)报告说,相对于他们产生的收入,在投资组合中持有的碳排放量不包括供应链和产品 /服务的排放。WKN(或Wertpapierkennummer)是由其证券签发和管理研究所发行的德国注册的证券守则。
在生物技术中,批处理培养物涉及在开始时将所有培养基组件放在反应堆中,除了大气气体和其他控制剂。这会随着时间的推移而创建一个不稳定的系统,而营养浓度不断变化。饲料批量文化通过无菌添加营养来修改这种修改,从而创建一个半开放的系统,其中液体培养体积随系统添加而增加。这种方法提高了生产率,产生更好的结果并允许更高的细胞密度。连续培养是一个连续的过程,在该过程中,添加营养并同时去除培养汤,由于平衡的进料和进料速率而保持恒定体积。比较这些方法揭示了关键差异:批处理文化使用封闭的系统,一开始就提供了所有营养,而Fed Batch则使用具有系统添加的半关闭系统。连续培养在开放系统中运行,并具有连续的营养添加和去除。过程的持续时间也有所不同,当产品形成时,批处理和批量停止,而连续文化通过不断删除产品来保持生产。微生物在每种方法中都经历不同的阶段:批处理和饲料批次经历滞后,原木,固定和死亡阶段,而连续培养物将微生物保持在滞后和对数阶段。这些方法之间的内部环境和养分量也有所不同,批处理具有不稳定的环境和恒定的营养量,饲料批量保持恒定的环境,养分量增加,并且连续培养保持环境和营养量稳定。4。•发酵过程在开始时将环境从外部转变为内部。•营养水平和条件会影响微生物的周转率,这在两者都保持良好时是最佳的。•控制微生物生长和所需产品在发酵过程中有所不同。•批处理培养物利用大型发酵罐,而饲料群则使用小型发酵罐,并且连续培养物使用小型发酵罐。•建立批处理文化很简单,而建立饲料批次或连续文化则需要更多的复杂性和精力。•产品的产量在发酵类型上有所不同,在某些过程中看到了高收率。•劳动需求根据发酵的类型而有所不同,其中一些人需要比其他人少的劳动力。•投资要求也有所不同,某些流程需要比其他流程更高的投资。•控制方法可以简单,快速或复杂,并且取决于所使用的发酵技术。•发酵主要用于生产二级产品,例如抗生素和重组蛋白。•最终产品是通过下游处理步骤获得的。综合生物技术(2017)Yang&Sha,“生物处理模式的初学者指南,美联储批次和连续发酵” doi:10.1016/b978-08-08-0888504-9.00112-4。本文概述了Fed Batch反应堆培养物,这是一种生物技术过程,在培养过程中,将一种或多种营养素喂给生物反应器,从而可以控制底物浓度。这种现象称为分解代谢物抑制。在控制营养水平会影响产品产量或生产力的情况下,该技术很有用。饲喂群培养特别有效。这些酸的形成称为细菌crabtree效应。分解代谢物抑制在微生物中提供了易于代谢能源(如葡萄糖)时,ATP浓度的增加会导致抑制酶的生物合成,从而导致能源源代谢较慢。许多参与分解代谢途径的酶都受到这种调节的约束。一种克服分解代谢物抑制的方法是饲喂群培养物,在该培养物中,葡萄糖浓度保持较低并受到生长的限制,从而使酶生物合成消除。青霉子素的青霉素发酵就是一个例子。5。使用需要特定养分的可营养性突变体在微生物过程中的,多余的养分供应会促进细胞的生长,但由于反馈抑制和终产产物抑制而抑制了代谢物的积累。 所需养分的饥饿减缓了细胞的生长和产生。 通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。 该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。 6。 指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。 7。,多余的养分供应会促进细胞的生长,但由于反馈抑制和终产产物抑制而抑制了代谢物的积累。所需养分的饥饿减缓了细胞的生长和产生。 通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。 该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。 6。 指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。 7。所需养分的饥饿减缓了细胞的生长和产生。通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。6。指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。7。用抑制启动子对基因的表达控制抑制启动子的基因的转录被DNA上的全抑制剂和操作员区域的组合抑制。美联储文化允许这样做。示例包括TRP启动子和Phoa启动子。延长运营时间,补充水分流失和降低培养汤粘度粘度的饲料批次策略用于工业生物过程中,以达到高细胞密度。通常,饲料溶液高度浓缩以避免生物反应器稀释。蛋白质已广泛研究其生长模式和局限性。该方法涉及以精确的速度将营养直接添加到培养物中,这有助于防止形成不良的副产品和氧气稀缺。该技术对于维持微生物繁殖的稳定环境至关重要。一种类型的Fed批次培养物,称为不断喂养的批量培养(CFBC),涉及在整个过程中以恒定的速率喂养限制生长的底物。该方法在数学上和实验上都得到了良好的建立,并且可以适用于固定容量或可变体积系统。在理想的情况下,细胞成倍地生长,通过按照这种生长成比例调整进料速率,可以维持细胞的特定生长速度,同时保持底物浓度恒定。这种方法允许对反应速率进行更多控制,并防止技术局限性,例如反应堆或氧转移困难中的冷却问题。指数填充的批量培养(EFBC)是另一种变化,涉及随着时间的时间呈指数增长的饲料率,以匹配细胞的指数生长速率。此外,它提供了代谢控制,以防止渗透作用,分解代谢产物抑制和形成不良的副产品。可以采用不同的策略来控制喂养过程中的生长,包括控制参数,例如氧气水平,葡萄糖浓度,pH,氨水水平和温度。这些方法对于维持微生物产生所需蛋白质的最佳条件至关重要,同时最大程度地减少了不需要的副产品的产生。大肠杆菌高细胞密度的生物层化方法