新的收获策略使用了每年在大西洋飞行中每年绑定的近10,000台野鸭的数据,人口从从加拿大东部到弗吉尼亚州延伸到弗吉尼亚州的大型空中和地面调查,USFWS零件调查的收获信息,以及从报告收获鸟类的猎人的猎人的恢复信息。此数据有助于管理人员了解是什么驱动了东部野鸭的种群,然后选择实现这两个目标的袋子限制。每年根据最新的人口信息以及关于各种收获率将如何导致野鸭种群如何导致木薯袋限制的预测,要么是4只鸟(不超过2个母鸡)的宽松包装,要么是2只鸟(不超过1个母鸡)的中等套件(不超过1个母鸡),要么是一只性别的鸟类,作为常规鸭袋袋的一部分。
论文的目的是通过文献综述研究基于人类运动的能量收获,从而使智能城市内的可再生能源融合在一起。这项研究旨在检查市场上的设备和应用,以将人类运动转化为能量,并找到在智能城市内安装的位置。从人类运动中收获能量是一种可再生且可持续的能源。人类能源收获技术将动力学的能力从人体运动转化为电力。智慧城市是一个概念,可以使用信息和通信技术来定义城市地区,以解决该城市的人类,社会,经济和环境问题。理论框架是检查人类运动和智慧城市概念的能量收获。它包括确定的日常通用人类学术示例和市场上基于人类运动的能源收集类型的设备。它还涵盖了对智能城市,智能城市框架计划和智能能源管理计划的需求。文献评论确定了公共公园的儿童游乐场能源设备,健身房中的健身能源设备以及拥挤的地区的人类步行地板设备,以融入智能城市。此外,设计并应用了修改的成本效益分析,以评估人类动议中提出的能量收集解决方案。它包括对财务分析参数的评估。通过计算支出成本,电力代理和收入来定量评估财务分析。实证研究结果表明,环境降低成本为零,成本最低,实施和环境风险较低,但收入较低,投资回报持续时间将很高。从人类能源中收获的能源与智能城市的概念相吻合,因为它使用人口众多的城市问题来解决能源短缺,同时仍然会遇到智能能源计划。因此,在智能城市的框架内,就环境,间接的社会和经济利益而言,部署基于人类的能源收集来源是可行的选择。
摘要 收获后的浪费和园艺作物损失加剧了人类面临的农业问题,并将在未来十年继续下去。水果和蔬菜为我们提供了大量有益健康的营养物质,与观赏植物一起,为我们的生活带来了各种愉悦的感官体验。然而,这些商品极易腐烂。大约 33% 的收获农产品从未被食用,因为这些产品的保质期很短,这导致收获后的损失和浪费。然而,这种损失可以通过培育保留理想特性并在漫长的供应链过程中产生较少损害的新作物来减少。新的基因编辑工具有望比以前更容易快速、廉价地生产具有增强特性的新品种作物。我们在这篇评论中的目的是批判性地评估基因编辑作为一种修改决定水果、蔬菜和观赏品质的生物途径的工具,尤其是在储存后。我们提供了 CRISPR-Cas9 方法和农产品供应链的简要和易懂的概述。接下来,我们调查了过去 30 年的文献,对控制或调节“成熟”的基因进行基因编辑的质量或衰老特征进行分类。最后,我们讨论了实施收获后基因编辑的障碍,从实验方法的局限性到国际政策。我们得出的结论是,尽管仍然存在障碍,但农产品和观赏植物的基因编辑可能会在未来 5 到 10 年内对减少收获后损失和浪费产生可衡量的影响。
下限参考点设定为每捕捞 0.5 公斤的商业指数值,这代表了渔业中约 20% 的生物量。为了在资源减少的情况下为决策提供更大的确定性,下限仅基于 sCPUE 指数而非汇总指数设定。为了实现可持续的库存和经济高效的商业部门,渔业的 TACC 上限设定为 1300 吨,TACC 下限设定为 300 吨。在管理策略评估期间,这些限制参考点被证明可以降低渔业关闭的可能性。TACC 从一个 TACC 时期到下一个 TACC 时期的变化量通过最大和最小变化缓冲区来限制,以帮助减少短期内的 TACC 变化。除了缓冲区之外,TACC 每两年设置一次,以进一步减少年度间 TACC 变化。所有绩效指标和参考点均列于表 4 中。
摘要 - 从一开始,电池一直是物联网(IoT)的主要电源。但是,就维护和生态不负责任而言,每年替换和处置数十亿电池的成本是昂贵的。由于电池是对可持续物联网的最大威胁之一,因此无电池设备是解决此问题的解决方案。这些设备以使用各种形式的能量收集充电的长寿命电容器运行,从而导致间歇性的开关装置行为。在这项工作中,我们为Lorawan设备的这种间歇性无电池行为建模。此模型允许我们以旨在确定Lorawan设备可以在没有电池的情况下工作的条件以及如何配置其参数的目的来表征性能。结果表明,可靠性直接取决于设备配置(即电容器尺寸,交通电压阈值),应用行为(即传输间隔,数据包大小)和环境条件(即能源收集率)。索引术语 - 事物,无电池的物联网设备,能量收获,洛拉,低功率宽面积网络
• 简短的欢迎 • 三个简短的演讲(3 x 10-15 分钟),总共约 40-45 分钟):1. 人工智能的总体框架、标准和应用领域。高级研究员 Thor Myklebust,SINTEF Digital 2. 人工智能和安全仪表系统的观点。教授 Mary Ann Lundteigen。挪威科技大学 (NTNU) 3. 一个好的系统架构就是你所需要的一切?博士候选人 Niclas Flehmig • 问答(15 分钟)
摘要。确定用于油棕收获预测应用的无人机系统配置是实现种植园产量最大化的重要一步。本文的目的是展示如何使用无人机系统生成可用于预测作物的高分辨率图像。研究分为两个阶段:无人机系统配置分析和数字图像处理以预测作物。无人机系统配置分析包括机身、推进器、航空电子设备和地面控制站。机载系统使用由 Pixhawk 航空电子设备、电动机和 20.2 兆像素数码相机控制的 X-8 机身。无人机系统用于在北苏门答腊省 Labuhan Batu Utara 的一个 6 年生油棕种植园上生成高分辨率数字图像。该无人机系统可生成高分辨率数字图像,可用于计算植物数量。然后将此特定区域中的植物数量用作预测作物的输入。6 年生油棕种植园的估计产量平均为每公顷每年 50.5 吨。这个结果大于棕榈油种植园管理公司的估计结果,即每公顷每年 23 吨。
关注o展览E - 初步卫生下水道对齐o展览F - 初步运输(访问与流通)•初步的区域雨水盆地盆地技术备忘录。•初步水文地质技术备忘录(水资源),包括潜在的井选研究(适用于大型东南地区的项目)。•Dixon标题报告中的初步收获。•Dixon地下水井库存的初步收获。•Dixon 1阶段和有限2期环境地点评估(ESA)的初步收获。•Dixon Geotechnical分析的初步收获。•迪克森生物学评估时的初步收获。•迪克森文化资源评估的初步收获(法律要求保密 - 仅用于城市使用)。
太阳辐射和风提供了用于加热和冷却的时间温度。0.005la e na 0.5 ba 0.5 tio 3 -0.06batio 3 -0.002TA是最适合能量收集的材料。通过调谐工作频率,负载电容和电阻进一步提高电压和功率输出。以0.04 Hz的频率获得6.7 m W的最大功率,负载电容为1 m f,电阻为25 m u。基于电感器(p e SSHI)的平行同步开关收获的非线性电路和电感上的混合同步开关收获(H E SSHI)用于增强功率。在P E SSHI和H E SSHI下,功率分别增加了54%和34.6%。但是,由于自触发过程和低能损失,因此首选H e SSHI用于促进。这项工作显示了无铅的式式式材料的潜力,用于在电路中损失和损失。©2022越南国立大学,河内。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
在本PDS中将IDP的操作员称为“ IDPS运算符”,而IDPS的披露文档称为“ IDPS指南”。如果您通过国内流离失所者进行投资,则您的权利和债务将受《国内流离失所者指南》的条款和条件管辖。间接投资者应在投资基金之前仔细阅读IDP指南。间接投资者应注意,他们指示IDPS运营商安排代表他们投资于基金的资金。间接投资者除了访问股票受托人的投诉解决过程之外,没有成为基金的单位持有人或拥有单位持有人的权利(请参阅第8节)。IDPS运营商成为基金的单位持有人,并获得了这些权利。根据管理IDP的安排,国内流离失所者可以行使或拒绝按间接投资者行使权利。间接投资者应参考其IDP指南,以获取有关其作为间接投资者的权利和责任的信息,包括有关适用于其投资的任何费用和费用的信息。有关间接投资者如何申请基金单位(包括适用的申请表)的信息也将包含在IDPS指南中。股票受托人对IDP运营商或国内流离失所者运营商的任何失败不承担任何责任,以向间接投资者提供股票受托人提供的当前版本的此PDS,或者在股票受托人的要求时向PDS撤回PDS。