摘要。数据保护现在是组织的重中之重,尤其是随着信息系统的发展以及现代技术带来的挑战。远程访问已成为业务连续性至关重要的,但也引入了重大的安全风险。为了解决这些问题,在数据安全的骨干上创新的创新至关重要。本文档介绍了受火星卫星启发的Phobos和Deimos加密方法。通过使用phobos和deimos的唯一轨道特性,该方法创建了动态加密算法。该方法涉及将字母分为组,并根据Deimos的位置应用转移技术,从而通过增加的复杂性来增强数据安全性。Phobos和Deimos加密方法旨在为维护敏感信息提供坚固的解决方案,以确保当今数字景观中的机密性,完整性和真实性。
摘要 — 将信息编码在预先合成的脱氧核糖核酸 (DNA) 链 (称为基序) 组合中是一种有趣的 DNA 存储方法,有可能避免逐个核苷酸 DNA 合成的高昂成本。基于对 HelixWorks 经验数据集的分析,我们为这种设置提出了两种通道模型 (有干扰和无干扰),并分析了它们的基本限制。我们提出了一种编码方案,通过利用通道输出处可用的所有信息来接近这些限制,这与 Preuss 等人为类似设置开发的早期方案不同。我们强调了通道容量曲线与合成 (写入) 和测序 (读取) 成本之间的基本权衡之间的重要联系,并提供了一种方法来缓解解码复杂性随基序库大小而呈指数增长的问题。
图1。生物启发的多尺度调节,通过模仿肌腱到骨接头的界面建筑,对用前所未有的力学(a)进行工程水凝胶,通过结合纳米级矿物质,以超高的刚度和韧性进行设计。(b)与肌腱类似,具有优先排列结构的水凝胶以及链间/链氢键与各向异性力学和优质疲劳性抗性一起赋予。(c)通过设计纤维结构,扭曲的水凝胶纤维具有较高的韧性,柔韧性和抗疲劳性。(d)水凝胶中的多尺度断裂机制,突出了各种结构元素的贡献,例如微/纳米尺度相,微/纳米尺度纤维和///链内链链氢键。在多个长度尺度上的模态,协同作用有助于改善力学。方程将总断裂能(γ)作为内在和外部断裂能的总和(γ0 +γd)。
太阳能供暖和冷却技术合作计划成立于1977年,是国际能源机构的首批多边技术计划(“实施协议”)之一。我们的使命是将最新的太阳能供暖和冷却研究和信息带到了全球能源过渡的最前沿。IEA SHC成员通过有关太阳能供暖和冷却组件和系统的任务(项目)进行合作研究,开发,示范和信息交流,以及他们在太阳能供暖和冷却领域推进部署和研发活动的应用。我们的重点领域以及括号中的相关任务包括:•太阳能空间加热和供水(任务14、19、26、44、44、54、69)•太阳冷却(任务25、38、48、53、65)•工业和农业过程的太阳热量(任务29、33、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62、62 68)•太阳能建筑/建筑/城市规划(任务8、11、12、22、22、22、23、23、37、41、41、47、51、51、52、56、59、59、63、66)•太阳能热和PV(任务16、35、60) (任务2、3、6、10、18、27、39)•标准,认证,测试方法和LCA/LCOH(任务14、24、34、34、43、57、71)•资源评估(任务1、4、5、9、17、17、36、46)
PTI Transformers LP,加拿大马尼托巴省温尼伯 ORCID:1. 0000-0002-1216-6513 doi:10.15199/48.2024.11.39 可再生能源收集器变压器摘要。太阳能发电站或风电场中的可再生能源集电变压器 (RCT) 将集电系统的电压转换为传输级电压。由于主要目标是提高电压,RCT 在此功能上与发电机升压 (GSU) 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的绕组配置星形-星形-埋置三角形,低压绕组通常通过中性点接地电抗器接地。设计必须考虑低压电流和电压中的谐波。抽象的。光伏站或风电场中的可再生能源站(RES站)的主变压器将来自主系统的电压转换为输电级电压。由于主要目的是提高电压,RCT 在这方面的功能与 GSU 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的三角形-星形绕组配置,低压绕组通常通过中性接地电感器接地。设计必须考虑低压电流和电压中谐波的存在。 (可再生能源发电站主变压器) 关键词:电力变压器、可再生能源发电站、过电压、谐波。可再生能源集电变压器 (RCT) 是一种专用电力变压器,它在太阳能发电站或风力发电场中,将电站集电系统的电压(通常为 34.5 kV)转换为传输电压水平,通常范围从 138 到 345 kV 或 500 kV。可再生能源站中 RCT 的位置如图 1 所示。虽然直接连接到逆变器的小功率变压器在论文和标准 [1, 2] 中有很好的描述,但集电变压器在已发表的参考文献或标准中并没有很好的描述。因此,本文的目标就是填补这一空白。图 1。集电变压器放置在集电母线和传输线之间;来自参考文献。 [1] 大多数可再生能源可能会出于不同的原因使用多个集电变压器,例如为了限制其物理尺寸(特别是为了运输或由于场地限制),或者利用电站设计理念的特点,例如分配负载或在故障期间在电站各部分之间转移负载,或紧急加载。由于 RCT 的主要目的是提高电压,因此该变压器的功能与发电机升压 (GSU) 变压器类似。然而,RCT 与 GSU 有许多区别,包括:(i)典型的绕组配置为星形-星形-埋地三角形,而 GSU 绕组采用星形-三角形连接,(ii)RCT 的低压绕组通常通过中性点接地电抗器 (NGR) 接地,而高压绕组
分类法旨在认识所有生物并了解其进化关系。通常认为,使用二项式命名作为命名物种的系统的分类学纪律通常被认为是从Linnaeus的出版物Plantarum开始的。作为最基本的学科,分类法可以通过促进科学交流对其他学科有益;它还使用来自其他学科的数据,例如形态学,解剖学,生物化学,生理学和分子生物学,作为划定分类界界定的证据。这些学科的数据提供了不同的加权证据,因为技术在过去的270年中已经提高了。目前,无论数据来自什么学科,都必须是单个样本,一种代谢培养物或插图,即一种物种或非广泛分类单元的名称类型,即永久固定在分类单元名称上的真实材料。最近,在微生物的分类法中,对命名类型的这种要求受到了质疑。高通量测序技术和生物信息学工具揭示了无数的微生物,这些微生物可能具有重要的生态功能,但在各种环境的当前方法中是不可养殖的。1由于缺乏真实的材料,这些微生物目前无法正式命名在任何经典命名法的框架下,因此阻碍了分类学的基本目的的传达科学交流。
摘要:在尼日利亚,频繁且长时间的断电一直是一个问题;尤其是在农村地区,那里的手机和其他移动电子设备的充电方式是使用发电机,这种发电机“不清洁”且非常耗费资金。尼日利亚拥有丰富的可再生能源资源,可以利用这些资源提供充电和电气化手段。本文介绍了一种户外便携式混合风能太阳能收集器的设计和实现,该收集器可用于在主电源中断、没有电源、外出户外活动期间以及可能没有电力供应的农村地区为便携式移动电子设备充电。便携式混合风能太阳能系统使用带有 LM2596 降压转换器的太阳能电池板、带有微型升压转换器的风力涡轮机和 18650 移动电源,以确保高效充电并为外部移动设备充电。太阳能电池板从太阳和风力涡轮机从风中获取的电能用于通过功率多路复用器为电池充电。此外,移动电源模块还可以提高电池的输出电压,然后可通过 USB 端口为手机和其他小型电子设备充电。在尼日利亚西南部的一个城市,研究人员在白天的户外对该系统进行了测试,以研究其性能。太阳能电池板能够在白天提供足够的电力为电池充电;但对于风力涡轮机来说,测试地点的风速不够高,无法产生足够的电压和功率来像太阳能电池板一样快速为电池充电。尽管如此,如果风速足够高,风力涡轮机可以产生足够的电压来为电池充电。在 100% 日照和 1.54 米/秒的风速下,开发的便携式混合收集器在白天的最高组合输出功率为 18.43 W。 关键词:混合风能太阳能收集器、太阳能电池板、风力涡轮机、风速、电池 1. 简介 多年来,尼日利亚的能源和电力状况一直是人们关注的主要和持续问题。超过 60% 的人口无法获得廉价电力,这凸显了解决能源危机的紧迫性 [1]。在尼日利亚,电力需求不断增加,这加剧了现有的供应不足。这一问题在没有电网系统的农村地区尤为明显,这凸显了探索可再生能源的必要性。尼日利亚农村地区的电力短缺凸显了开发可再生能源解决方案的重要性。尼日利亚在发电和配电方面的能源危机导致了许多问题,包括大多数行业关闭,生产率低下和其他不利的宏观经济影响 [2]。尼日利亚撒哈拉以南地区约 75% 的居民无法获得电力。即使是那些接入电网的人也仍然面临能源短缺。民众使用燃料或柴油发电机(不可再生能源)为手机和电池充电。
摘要。城市地区的运输正在通过各种车辆进行转变,而电子驾驶员的增长最快。尽管他们很受欢迎,但电子示威者仍面临不兼容的充电器等问题,尤其是租赁服务问题。无线充电是通过无需用户干预的电池充电而作为解决方案的。本文重点介绍了针对电子弹药机的磁性充电器的设计和开发。这项研究详细介绍了恒定电流恒定电压(CC-CV)电荷的线圈拓扑,间隙定义和优化控制。目前的关键贡献是对这些因素的综合考虑以及车辆的材料和结构,以精确设计和实施。车辆的尺寸显着限制了线圈设计。因此,在过去,使用ANSYS MAXWELL进行了详细的分析,以确定实际电子弹药机中主要和次要线圈的最佳位置。此分析导致了线圈几何形状的最佳设计,从而最大程度地减少了成本。拟议的系统已通过真实的原型进行了验证,并结合了CC-CV控制,以确保为各种电池状态提供安全充电,并适用于广泛的E型驾驶员,从而增强了此类充电器在公共装置中的可用性。
许多机器会产生大量废热,这些废热可用作能量收集物联网设备的稳定而充足的能源。这种设备的能量转换子系统的主要组件是放置在热源和散热器之间的热电发电机 (TEG)。一旦 TEG 达到稳定状态,其上产生的电动势仅取决于温度梯度。本文旨在提出一种利用工作机器的另一个副产品——振动来提高发电量的新方法。我们的想法是在 TEG 和散热器之间添加具有可变导热性的传热介质;最好是具有高导热系数和气隙的流体。随机运动会导致流体飞溅,从而导致在 TEG 和散热器之间形成短暂的热桥。考虑到 TEG 的热化是其发电的主要限制因素,与热源的短暂接触会大大增加其输出功率。类似的方法可以应用于人或动物持有的任何能量收集可穿戴设备,因为生物在日常活动中会传递体热和随机运动。我们测量了随机移动设备在各种角度下的性能。与其他设置相比,随机移动容器的功率输出明显更高。最大改进为 49%。平均改进为 10%,中位数为 17%。
1,2 Mahendra技术研究所(自治),纳马卡尔,泰米尔纳德邦,印度摘要 - 浮动废物和污染物造成的水污染是威胁水生生态系统和人类健康的主要环境问题。本文介绍了能够从水面收集固体废物的自主浮动机器人的设计和实施,同时使用基于物联网(IoT)的感应系统同时监视关键水质参数。机器人结合了计算机视觉,机器学习算法和超声波传感器的组合来有效检测和收集浮动碎片。板上IoT传感器连续测量pH,浊度,溶解氧和温度等参数,将数据上传到云平台进行实时监视和分析。现场测试证明了该系统的自动导航和清除浮动废物的能力,同时在部署区域提供了全面的水质数据。拟议的系统为减轻水污染和监测生态系统健康提供了有效的解决方案。关键字:物联网,水污染,浮动废物,污染物,固体废物收集