主要意见 一般性意见 - 目标 A(M)C 一贯使用“should”而非“shall”来表示指导。但是,明确的目标要求更明确地向申请人传达适航当局希望实现的目标。建议在目标中使用与 ED-80/DO-254、ED-12C/DO-178C 和 MCP 的 CRI/IP 中规定的目标一致的形式,而不是使用“should”语言。为了将建议的改写保留在一条意见中,所有目标定义文本的极其有限的替换如下所示。请注意,只陈述目标的一部分来显示替换,其中未更改的文本在中间表示为“...”和“...等”。目标 CD-1 对于每台定制设备,申请人应在 PHAC 或任何相关文件中记录文件:…等。目标 CD-2 申请人应在 PHAC 或任何其他适当的硬件计划中提出一个流程,以开发包含以下内容的简单定制设备:…等。目标 CD-3 申请人应按照 ED-80/DO-254 验证流程(ED-80/DO-254,第 6 和 10 节)验证所有定制设备要求。…对于 DAL A 和 B 开发,验证活动应独立进行。目标 CD-4 对于硬件 DAL A 或 DAL B,申请人应审查详细设计以证明…等。目标 CD-5
霍皮族是联邦政府承认的部落,其保留地位于亚利桑那州东北部,占地超过 150 万英亩。过去 40 年来,部落的经济一直靠煤炭相关业务推动,对单一经济引擎的依赖。这种模式可能在很长一段时间内都有效,但在 2019 年,随着纳瓦霍发电站 (NGS) 和相关的凯恩塔矿的关闭,煤炭相关业务戛然而止。这导致部落总共失去了约 1,360 至 1,904 个工作岗位,收入减少了 85%。霍皮族需要新的经济发展来弥补因煤矿关闭而失去的工作岗位和经济价值。不幸的是,部落的保留地地处偏僻,缺乏可靠的基础设施,这阻碍了大多数经济发展机会。部落也缺乏投资新经济机会的资金。这些问题因 COVID-19 疫情而加剧。由于许多阻碍经济发展的原因(例如孤立、缺乏可靠的基础设施和缺乏资金),该部落受到了疫情的严重影响 1 。EDA 第二阶段的 BBBRC 资金将为部落提供急需的资金,以实施项目,使其经济摆脱煤炭关闭和 COVID 疫情的影响。第二阶段的 BBBRC 资金将帮助霍皮族改写其能源故事;这 5 个组成项目将使部落实现由霍皮族主导的清洁能源转型的愿景。第二阶段确定的项目旨在围绕太阳能经济集群、物理电力基础设施和可持续的高薪工作的发展重建部落的收入。这不仅会创造就业机会,还会通过劳动力培训和发展进行能力建设,从而解决霍皮族社区内大量失业的问题。在我们第一阶段的努力中,作为部落复原力的证明,部落领导层领导了一项前所未有的规划工作来支持部落的 EDA BBBRC 概念。霍皮公用事业公司 (HUC) 在部落理事会的授权下,联合了一个由霍皮族领导的联盟,其中包括两所大学和许多行业合作伙伴。组成霍皮族清洁能源转型的五个组成部分项目直接解决了部落当前的经济发展需求,同时为可持续的经济发展机会奠定了基础。下面概述的五个项目的愿景与 CEDS 一致,并将改写部落的能源故事,通过从煤炭过渡到太阳能,发展部落太阳能劳动力,为部落成员创造高薪工作,建设新的公用事业基础设施,以提高增长能力和对部落家庭、企业和保留地偏远客户的可靠性,并规划创新的清洁能源和基础设施项目,利用部落加强的内部能力、劳动力、和现代化基础设施,以促进保护区的经济发展。
贝尔定理排除了许多可能的量子力学改写,但在广义框架内,它并不排除所有局部介导模型。此类模型将纠缠粒子之间的相关性描述为由中间参数介导的,这些中间参数跟踪粒子世界线并遵守洛伦兹协方差。这些局部介导模型需要放宽通常被视为理所当然的时间箭头假设。具体而言,这些模型中的一些介导参数必须在功能上依赖于其未来的测量设置,即与后续时间相关的输入参数。这种通常称为逆因果的选项已在文献中反复指出,但对能够描述特定纠缠现象的明确局部介导玩具模型的探索仅在过去十年才开始。本文简要介绍了此类模型。这些模型提供了与时空位置相关的事件的连续和一致描述,其中的各个方面是“一次性”解决的,而不是从过去到未来展开的。通常与贝尔定理相关的量子力学和相对论之间的矛盾在这里并没有出现。与传统的量子模型不同,指定系统状态所需的参数数量不会随着纠缠粒子的数量呈指数增长。推广此类模型以解释所有量子现象的承诺被认为是一项巨大的挑战。
这本书是2000年版的重大修改版本。在这本书的第三版中进行了广泛的修订。由于技术和行业进步的进步,已经引入了新材料。提供的信息包括材料的特征,以其物理和机械性能,重点是其强度和耐用性质量。提供的材料可以通过I.S.的信息补充。代码和各种产品制造商。此版本在处理水泥,混凝土,石灰等的章节中体现了材料的变化。对大多数材料的测试程序进行了更新,因为已经修改了一些代码。尤其是在第3章岩石和石头中,有关石头测试的部分已被完全改写。关于石灰的第8章已完全重写,以使其更加友好。关于水泥,第10章混凝土和第20章的逻辑更改已经进行了有关水泥和水泥混凝土的第20章。混凝土混合物的混合物已在第10章中放置,有关指向的部分已从第12章中有关建筑迫击炮的删除。在第20章关于特殊水泥和水泥混凝土的第20章中引入了许多更重要的更重要的混凝土,例如自我压实混凝土,细菌混凝土。在这些章节中,而且在其他章节中也进行了描述中数据和替换的大量修订。智能材料和复合材料已在第21章中引入了有关其他材料的信息。作者将感谢读者的评论和建议,以进一步改善本书。
达拉斯·伊索姆的文章《中途岛战役:日本人为何失败》[《海军战争学院评论》,2000 年夏季,第 60-100 页] 值得称赞,因为它使用了日本资料,并提出了有趣的观点。我们特别赞赏伊索姆对日本幸存者的采访,这些采访为日本飞机重新武装程序提供了新的有用信息。这些新数据对于准确叙述 1942 年 6 月 4 日早晨在日本航母上发生的事情至关重要。但是,我们认为,矶教授的论点似乎过于依赖对日本通信的相当僵化(且极具争议)的解读:即南云忠一中将究竟何时收到由利根号巡洋舰发射的 4 号侦察机的传输。此外,虽然矶教授的重新武装信息(他认为这是南云未能在遭到致命攻击前发动反航母打击的关键)对于了解日本方面的战斗情况显然很重要,但我们认为他的作战分析还不够深入。因此,我们不能接受他的结论。在矶教授撰写本文时,我们正在重新评估和改写日本对中途岛的叙述,这是我们自己对加贺号航母残骸进行鉴定的结果。 1 我们方法的一个关键部分是建立一个日本航母打击部队的精确作战模型。正如我们将展示的那样,
在量子信息处理与计算中,凸结构在量子态、量子测量和量子信道的集合中起着重要作用。一个典型的凸结构问题是量子态鉴别,它从一组给定的量子态 {| Ψ i ⟩} ni =1 中区分出一个量子态,其中先验概率 pi 满足 P nipi = 1,参见[1–4]。最近,[5–8] 考虑了不可用量子态到可用状态集合的最佳近似问题。对于给定状态 ρ,问题改写为从 {| Ψ i ⟩} ni =1 中寻找最难区分的状态,使得 ρ 与凸集 P nipi | Ψ i ⟩⟨ Ψ i | 之间的距离最小[7],该问题的解决有利于可用量子资源的选择[9–11]。与量子相干性和量子纠缠中距离测度的选择类似,我们在这里采用迹范数作为距离测度[12–18]。一个重要的问题是如何选择基{| Ψ i ⟩} ni =1。在量子信息处理中,人们一般关注逻辑门在制备量子态时的可用性。从资源论的角度看,所谓可用态通常意味着它们可以很容易地制备和操纵。在光学实验中,倾斜放置的偏振器将输入光子态转换为真实量子逻辑门的本征态。如果半波片与水平轴以π/ 8倾斜放置,则构成阿达玛门[19, 20]。因此,无论从实验可用性还是态制备的可行性角度,将真实量子逻辑门的本征态视为可用基都是有意义的。给出的不确定关系
十年前,人们证明了利用 CRISPR/Cas9 在真核生物中进行基因组编辑 (Cho 等人 2013 年,Cong 等人 2013 年,Feng 等人 2013 年,Jinek 等人 2013 年,Mali 等人 2013 年),现在该技术已经深入科学界,正在进行大量研究 (Wang 和 Doudna 2023)。在植物科学领域,基因组编辑技术不仅用于植物病理生理学研究,还用于实际育种 (Nerkar 等人 2022),一些基因组编辑作物已经商业化并被人类消费 (Waltz 2022)。因此,基因组编辑不再是一项仅由研究人员处理的实验性和不常见的技术,而是一项已进入公众实施阶段的技术。相比之下,这种包括自由改写基因组序列的细微差别的基因组编辑技术真正可以毫不费力地做到的是破坏基因。事实上,大多数使用基因组编辑的研究成果(Matres 等人,2021 年)和正在开发的基因组编辑作物(Nagamine 和 Ezura,2022 年,Xu 等人,2020 年)都是基因破坏的结果。由于可以通过专门破坏对品种特征有不利影响的基因来开发有用的品种,因此基因组编辑技术是一项革命性的技术,可以高效、快速地实现这一目标。另一方面,全基因组关联研究(GWAS)表明,决定数量性状或与遗传变异相关的大多数遗传变异都与基因破坏有关。
活动 可接受 注意 语法检查 是 多年来,语法检查一直是常见文本编辑器的标准功能。无需披露为此目的使用人工智能的情况。 文本编辑、改写 是 人工智能能够生成甚至广泛的文本修改建议。这样的建议需要批判性评估,因为它们可能会完全改变原意。并非所有科学学科都以相同的程度用于人工智能训练。因此,人工智能可能会提出一篇乍一看似乎合乎逻辑的文本,但在批判性评估中可能会发现它缺乏背景,甚至包含错误。此外,必须始终牢记,撰写技术文本是学生必须练习和掌握的技能。学生应该勤奋,学会如何将自己的想法用文字表达出来。此类人工智能使用情况必须在所用软件列表中披露。有关引用样式建议,请参阅 [6.1] 或 [6.2]。 文献检索 部分 人工智能是寻找灵感和获得主题基本理解的好工具。但是,它不能是唯一的信息来源。以这种方式获得的任何和所有信息都必须经过验证和批判性评估。人工智能工具容易产生“幻觉”(编造事物),可能会使用过时、不可靠或有偏见的信息。此外,搜索信息、批判性地评估这些信息以及找到与未来工作相关的想法是学生需要掌握的关键技能。文本结构部分人工智能能够建议文本的结构,包括划分章节,甚至建议每章的内容。这样的建议需要批判性评估。学生是自己论文的作者。每位作者都对自己作品的内容负责,即:
十年前,人们证明了利用 CRISPR/Cas9 在真核生物中进行基因组编辑 (Cho 等人 2013 年,Cong 等人 2013 年,Feng 等人 2013 年,Jinek 等人 2013 年,Mali 等人 2013 年),现在该技术已经深入科学界,正在进行大量研究 (Wang 和 Doudna 2023 年)。在植物科学领域,基因组编辑技术不仅用于植物病理生理学研究,还用于实际育种 (Nerkar 等人 2022 年),一些基因组编辑作物已经商业化并被人类消费 (Waltz 2022 年)。因此,基因组编辑不再是一项仅由研究人员处理的实验性和不常见的技术,而是一项已进入公众实施阶段的技术。相比之下,这种包括自由改写基因组序列的细微差别的基因组编辑技术真正可以毫不费力地做到的是破坏基因。事实上,大多数使用基因组编辑的研究成果(Matres 等人,2021 年)和正在开发的基因组编辑作物(Nagamine 和 Ezura,2022 年,Xu 等人,2020 年)都是基因破坏的结果。由于可以通过专门破坏对品种特征有不利影响的基因来开发有用的品种,因此基因组编辑技术是一项革命性的技术,可以高效、快速地实现这一目标。另一方面,全基因组关联研究(GWAS)表明,决定数量性状或与遗传变异相关的大多数遗传变异都与基因破坏有关。
4 Hd 安全 (A) 4 月 24 日 ACSO 1200(第一次修订)1. 公共部门平等责任。根据 ACSO 3252(军队政策和服务的平等分析行为和保证),此 ACSO 1200 - 军队安全和环境管理系统 (SEMS) 被视为违反公共部门平等责任,虽然它确实会对人们产生影响,但不会对任何受保护的特征群体产生不利影响,因此未完成平等分析影响评估 (EQIA)。2. 公共部门无障碍条例 2018。军队有法律要求遵守 2018 年公共部门无障碍条例。该法规适用于所有在线内容,包括文档(PDF、Word、PowerPoint、Excel)。 ACSO 1200 – 陆军 SEMS 的所有者确认他们已对本文档进行了可访问性检查,并且它符合《2018 年公共部门可访问性条例》的法律要求。3. 包容性语言。根据国防人民首领和陆军委员会执行委员会 (ExCo) 的指示,所有政策和服务都必须使用包容性语言。这通常可以通过改写句子来实现,例如使用“他们”或“他们的”而不是“他”或“她”。ACSO 1200 – 陆军 SEMS 的所有者确认它符合国防部的包容性语言指南。4. 本文档的维护和修订。本文档将每年审查一次,并根据需要进行修订。文件的所有硬拷贝均不受控制。修订将由陆军安全组 - 安全中心、陆军总部、布伦海姆大厦、马尔伯勒线、蒙克斯顿路、安多弗、汉普郡 SP11 8HT 管理。