摘要:通过 1,8-二氨基萘衍生物的电化学反应对平面碳电极进行廉价的溶液相改性,通过形成 15 - 22 纳米厚的有机薄膜,使容量增加了 120 至 700 倍。用相同方法改性高表面积碳电极可使容量增加 12 至 82 倍。改性层含有 9 - 15% 的氮,以 - NH - 氧化还原中心的形式存在,从而产生较大的法拉第分量,每个电子对应一个 H + 离子。在 0.1 MH 2 SO 4 中长时间循环后,电极没有容量损失,并且电荷密度明显高于基于石墨烯和聚苯胺的类似报道电极。对沉积条件的研究表明,N 掺杂的低聚物带是由重氮离子还原和二氨基萘氧化形成的,而 1,8 异构体对于大容量增加至关重要。容量增加至少有三个原因:带形成引起的微观表面积增加、含氮氧化还原中心的法拉第反应以及极化子形成导致的带电导率变化。开发了一种水相制造工艺,既提高了容量,又提高了稳定性,并且适合工业生产。二氨基萘衍生薄膜的高电荷密度、低成本制造和 <25 纳米厚度应该对平面和高表面积碳电极的实际应用具有吸引力。关键词:超级电容器、可再生能源、重氮还原、法拉第储能、导电聚合物/碳复合材料、N 掺杂碳材料
纳米材料的改性、薄膜涂层、纳米晶尖晶石的合成、石墨烯和 MXene 等二维材料的合成和表征、金属基复合材料、摩擦搅拌加工、可生物降解材料的非常规加工。通过太阳能电池实现绿色能源。
本期特刊旨在介绍先进功能材料的受控合成和改性策略的最新趋势,这些材料在环境污染控制以及能源生成、转换和储存的吸附、催化和膜分离技术的开发中发挥着至关重要的作用。从材料科学的角度来看,近年来人们对功能材料的合成和改性策略表现出浓厚的兴趣,例如(但不限于)金属氧化物、金属纳米粒子、半导体、金属有机骨架、天然微结构材料、(生物)聚合物、高岭石/粘土、碳氮化物、纳米流体、碳基纳米复合材料等。由于这些材料的独特性质,人们开始关注这些先进材料的分子设计与环境和能源领域中各种催化和吸附介导的转化反应的结构活性之间的关系[...]如需进一步阅读,请点击特刊网站的链接:https://www.mdpi.com/journal/separations/special_issues/O1RS696HQU
摘要 本综述强调了在沥青结合料和沥青混合料中添加 PE 的效果,强调了由于环境和经济优势,其在全球范围内的应用日益广泛。分析评估了用不同形式的聚乙烯 (PE) 改性的沥青结合料和混凝土混合料的性能,包括低密度聚乙烯 (LDPE) 和高密度聚乙烯 (HDPE)。综述表明,加入废聚乙烯可显著提高沥青混合料的关键性能。具体而言,添加 PE 会增加软化点、粘度和比重,同时降低渗透率。此外,它还提高了复合剪切模量、热稳定性、防潮性和抗永久变形性,尽管它可能会导致改性混合料的容重和蠕变速率降低。建议最佳 PE 含量在结合料重量的 4-12% 范围内,以显着提高马歇尔稳定性、流动性、矿物骨料中的空隙 (VMA)、气孔、动态模量和整体强度。
• 具有可控原子位点、纳米结构和介观结构的金属改性氧化物/沸石 • 通过分子前体热解的金属碳化物、氮化物、磷化物 • 具有可控形貌、成分和晶相的纳米结构材料的可扩展溶液合成
图S8。fesem图像(c)c,(c)c,(d)o,(e)p,(e)p,(f)ag,(g)v,(g)v,(h)W。fesem rpom-cv3 at(i)较低和(i)较低和(j)较高的eDx元素(e edx元素)(k)(k)(k)o, (o)V,(P)W。
日本东京癌症研究所胃肠病学中心,胃肠病学中心,日本东京,日本东京B医学肿瘤学系,日本utsunomiya,utsunomiya,utsunomiya,utsunomiya,gastroenterology,Yokohology and Yokoholoy and Yokoholiy and Yokohoy and cantobiriary and Pancrial and cantobil and tokrial,日本E肝素和胰腺肿瘤学部,日本喀西瓦国家癌症中心医院东部,喀西瓦州F胃肠病学系,卡纳泽大学医院,卡纳泽大学医院,卡纳泽,日本卡纳泽,日本奇巴癌临床研究中心,日本奇巴,日本日本日本临床中心/地区临床中心/地区的日本临床中心,日本癌症中心日本Yokohama,Yokohama大学医学中心,Kyorin大学医学系,东京,日本东京医学院,K k胃肠病学系,日本Nagoya Aichi Cancer Center医院,日本纳戈亚氏菌,Kansai医科大学,Osaka,Osaka,Osaka,Osaka,日本北部医院,Hokkaido Hospital,sapporok,Sapporok,Sapporok,Saperok Onsok,日本Shizuoka的中心o胃肠病学和肝病学系,日本大阪市医学院P型医学和生物学科学系福克武库卡,福克武科学系福库卡福克库卡州福克索癌症中心,福克索,日本医学院研究生院日本东京癌症研究所胃肠病学中心,胃肠病学中心,日本东京,日本东京B医学肿瘤学系,日本utsunomiya,utsunomiya,utsunomiya,utsunomiya,gastroenterology,Yokohology and Yokoholoy and Yokoholiy and Yokohoy and cantobiriary and Pancrial and cantobil and tokrial,日本E肝素和胰腺肿瘤学部,日本喀西瓦国家癌症中心医院东部,喀西瓦州F胃肠病学系,卡纳泽大学医院,卡纳泽大学医院,卡纳泽,日本卡纳泽,日本奇巴癌临床研究中心,日本奇巴,日本日本日本临床中心/地区临床中心/地区的日本临床中心,日本癌症中心日本Yokohama,Yokohama大学医学中心,Kyorin大学医学系,东京,日本东京医学院,K k胃肠病学系,日本Nagoya Aichi Cancer Center医院,日本纳戈亚氏菌,Kansai医科大学,Osaka,Osaka,Osaka,Osaka,日本北部医院,Hokkaido Hospital,sapporok,Sapporok,Sapporok,Saperok Onsok,日本Shizuoka的中心o胃肠病学和肝病学系,日本大阪市医学院P型医学和生物学科学系福克武库卡,福克武科学系福库卡福克库卡州福克索癌症中心,福克索,日本医学院研究生院
ATMP是移植产品(TPP),基因治疗药物(GT),遗传改性的生物(GMO),其他新型治疗产品(mRNA或DNA产物),寡核苷酸,CRISPR/CAS,CAS,CAS,CAS,野生型病毒/细菌/细菌,细菌型,病原体不可能,或不可用于疾病,或不可能。
迄今为止,尚无一种普遍接受的或标准的 CUI 涂层测试方法。当前的测试方法在可靠性和复杂性方面存在重大缺陷,并且成本非常高昂。在某些情况下,测试需要 6 个月以上才能获得结果。建议的测试方法简洁、快速,与其他方法不同,它为热应力下的涂层提供了高度的可重复性。加速循环应力测试能够测试涂层在绝缘状态下从环境温度到 700ºF (350ºC) 的间歇性浸泡。市场上的大多数 CUI 环氧涂层都是某种形式的改性酚醛树脂。有些被笼统地归类为“混合或改性环氧”涂层,温度限制为 400-450ºF (200- 225ºC)。真正的混合物可以基于共聚物 IPN 粘合剂系统,也可以称为基于热障颜料的复合材料,其热性能可高达 700ºF (350ºC)。测试协议包含 4 项关键测试,用于确定环氧基 CUI 涂层的使用寿命。一个测试设备/室将使用模拟 CUI 环境结合以下主要测试。
电化学储能技术的进步推动了对电池安全性能和小型化的需求,这就需要适用于片上微电池技术的易于加工的聚合物电解质。然而,聚合物电解质的低离子电导率和较差的可图案化能力阻碍了其在微型设备中的应用。在此,我们用锂盐改性聚环氧乙烷(PEO)作为基质材料,得到可图案化的锂离子聚合物电解质。由于高度非晶态和通过混合效应更多的锂离子传输途径以及环氧数量增加,所得样品的离子电导率与50°C下的SU-8样品相比提高了一个数量级,达到2.9×10-4S·cm-1。改性后的 SU-8 具有良好的热稳定性(> 150 °C)、机械性能(弹性模量为 1.52 GPa)以及 4.3 V 的电化学窗口。制造并测试了半电池和微型设备,以验证微型片上电池的可能性。所有这些结果都证明了将片上电池与微电子集成是一种有前途的策略。