Algainp材料技术在过去几年中一直在稳步发展,从而导致高性能的边缘发射激光〜EEL!1和红色的垂直腔表面发射激光器〜VCSEL!。2,3相对于Algainp系统,藻类受益于改进的指数对比度,降低的电阻和热电阻率,更成熟的加工技术,以及将碳用作p-型掺杂剂的能力,以实现出色的掺杂剂控制和稳定性。4然而,将基于ALGAINP的活性区与基于C的基于藻类的DBR集成是通过较差的载流子转运到AlgaInp活性区域的困难,并且无法将C用于Algainp合金中的P进行P。先前关于Algainp/ Algaas异质结构激光二极管的报道已在连接处的P侧使用Zn或Mg掺杂,以改善孔注射,5,6消除了使用藻类使用的潜在关键优势,并进一步使穿着物质扩散特征复杂化。7,8此类困难导致实施相对较厚〜8 L!红色VCSELS中的光腔6
我们将在高度可调的Moiré材料中探索物质及其量子相变的外来量子状态。示例包括分数Chern和分数拓扑绝缘子,非常规的超导性,激子冷凝物和量子自旋液体。我们将使用广泛的实验工具研究这些物质,包括纳米型,光学显微镜和光谱,量子传输测量,扫描探针显微镜和热力学探针。作为一个实验组,我们也有兴趣开发新的纳米级设备平台和测量技术来解决特定的感兴趣问题。
电动垂直起飞和降落(EVTOL)飞机部署的关键方面是所使用的电池的安全性和性能能力。安全要求的一个组成部分是需要储备能源,只有在紧急情况下才能使用。在文献中,已经观察到应限制电池能量储备区域的下限,以避免发生急剧下降电压下降的区域。在此,提出了一种定义下限的方法。这旨在延长飞机可以在登陆不再完成之前巡航的时间。一种新型的功率能力测试程序用于测量可以完成恒定功率脉冲的最低电荷(SOC)。这与在预定的SOC点执行脉冲的现有功率能力测试不同。提出的方法的目标是复制着陆条件,以了解低SOC的功率能力性能。对各种环境条件和用例进行了测试,包括温度和功率脉冲以及两组不同老化的细胞。对于定义的测试条件,日历老年细胞的最低SOC值范围为6%至14%,而循环老化细胞的范围为8%至27%SOC。该测试的结果是一个特征图,将温度,脉冲功率和脉冲持续时间与最低SOC相关联。特征图指示需要在需要执行降落之前允许电池的最低SOC值。将特征图的精度与从测试数据参数参数的电池等效电路模型进行了比较。根据一组先前未测量的实验条件对定义的方法进行了实验验证。总体而言,与测量值相比,特征图提供了良好的精度,而MAP和模型方法的平均最大绝对百分比误差最多为7.5%。此外,测试结果表明,如果将最坏情况的降落场景用作储备区的下限,则如果不考虑细胞降解,则可用的名义飞行的可用SOC范围将受到很大的影响。
ACR是在受监管和自愿性碳市场中运营的全球领先碳信贷计划。成立于1996年,是世界上第一个私人自愿温室气体(GHG)注册表,ACR对碳市场的完整性充满信心,以促进变革型气候结果。ACR通过开发环境严格,基于科学的标准和方法的发展以及通过其透明注册表系统的报道来确保碳信用质量。ACR由Winrock International的全资非营利子公司环境资源信托有限责任公司约束。
抽象心率变异性(HRV)分析是评估自主神经系统调节和心血管健康的重要工具。本研究通过使用MATLAB代码并将其性能与广泛使用的软件工具(Kubios和GHRV)进行比较,探讨了改进的HRV分析技术。在四个不同条件下的十个受试者(基线,休息,Stroop颜色任务和冥想)中的十个受试者的心电图(ECG)数据收集和分析。该研究重点是开发和实施MATLAB中的新算法进行HRV估计,从而对现有方法进行了全面的比较。该研究研究了通过MATLAB实施获得的HRV分析结果的准确性和可靠性,与Kubios和GHRV相比。MATLAB代码被优化,以增强计算速度和准确性,从而实时处理ECG数据。结果表明,使用拟议的MATLAB实现,HRV分析的显着改善。提出的MATLAB代码和Kubios对于高频功能具有相似的精度,精度为85%。GHRV的PNN50精度为100%,表明其在匹配参考数据方面的准确性很高。比较分析证明了在不同实验条件下的不同HRV指标。此外,结果突出了Kubios和GHRV之间研究方法的差异,展示了其在临床和研究环境中广泛采用的潜力。本研究不仅提出了先进的HRV分析方法,而且还提供了有关现有软件工具可靠性的宝贵见解。这些发现为研究人员和临床医生为其特定应用选择HRV分析工具时提供了明智的选择,以确保对心血管健康和自主神经系统功能的准确有效评估。有必要进行进一步的研究和验证,以建立跨不同人群和实验范式的拟议方法的鲁棒性和概括性。
摘要。本文对可持续实践和技术进步的整合如何重塑农业综合企业的景观进行了全面探索。随着全球对粮食的需求随着环境保护的需求而增加,农业部门面临着创新和适应的压力。本文系统地回顾了可持续农业技术的最新进步,包括精确农业,生物技术和可再生能源,并评估其对生产力,可持续性和经济可行性的影响。通过定性和定量分析,该研究强调了可持续实践在提高资源效率,降低环境降低以及提高农业系统对气候变化的弹性方面所起的重要作用。它还研究了与采用这些技术相关的挑战和机遇,例如投资成本,监管障碍以及对熟练劳动的需求。此外,本文讨论了这些转型对农业综合企业价值链(从农民到消费者)的利益相关者的含义,以及为促进可持续性的合作努力的潜力。通过利用案例研究和经验证据,它为农业综合企业的发展动力提供了宝贵的见解,并为旨在促进更可持续和生产性的农业部门的决策者,从业人员和研究人员提供建议。
市长 Ballantyne、萨默维尔种族和社会公正部 (RSJ) 和萨默维尔公立学校公平和卓越部邀请社区成员参加小组讨论,以纪念马丁·路德·金博士的一生和遗产,时间为 1 月 20 日星期一上午 11 点至下午 1 点 30 分,地点为东萨默维尔社区学校 (50 Cross St.)。活动期间,RSJ 将收集捐赠物品来帮助支持我们无家可归的邻居,这些物品将被送到支持无家可归和流离失所居民的社区合作伙伴手中。在 somervillema.gov/rsj 可以找到所需的个人用品、马厩食品和婴儿用品的完整清单。马丁·路德·金纪念日当天,市政大楼关闭。有关 MLK 日活动或捐赠活动的问题,请联系 rsj@somervillema.gov。****************************祝以下人本周生日快乐:祝来自东萨默维尔的 Philip Ercolini 生日快乐。我们祝他有个美好的一天。祝 Katie Lathasha Harris 生日快乐,我们也祝她生日快乐。对于本周也将庆祝生日的 Nancy Huber Coutoumas,我们也祝她生日快乐。我们祝我们所有的 Facebook 好友,如 James Ribeiro、Leslie Figueira、Rachel Tonello、Rosemary Ardagna 和 Joseph William Schen-kenfelder 生日快乐。我们希望每个人都有美好的一天。对于我们可能错过的其他人,我们真诚地祝他们生日快乐。**************************** 续第 7 页
在Novo Nordisk基金会的赠款的支持下,Polyfablab试图缩小研究实验室和可用的洁净室设施之间的差距。这使学术界和工业用户的研究人员能够进行实验
细菌免疫。Science。337 : 816-821, 2012。6)Gaj T, Gersbach CA, Barbas CF.: 基于ZFN、TALEN 和CRISPR/Cas 的基因组工程方法。Trends. Biotechnol. 31 : 397-405, 2013。7)Doudna JA, Charpentier E.: 基因组编辑。利用CRISPR-Cas9 进行基因组工程的新前沿。Science。346 : 1258096, 2014。8)Strecker J, Ladha A, Gardner Z 等:利用CRISPR 相关转座酶进行RNA 引导的DNA 插入。Science。 365 :48-53,2019。9)Klompe SE,Vo PLH,Halpin-Healy TS 等:转座子编码的 CRISPR-Cas 系统直接介导 RNA 引导的 DNA 整合。Nature。571 :219-225,2019。10)Jacobi AM,Rettig GR,Turk R 等:用于高效基因组编辑的简化 CRISPR 工具及其向哺乳动物细胞和小鼠受精卵中的精简协议。方法。121-122 :16-28,2017。11)Lino CA,Harper JC,Carney JP 等:CRISPR 的递送:挑战和方法综述。药物递送。 12)Kaneko T.:用于产生和维持有价值动物品系的生殖技术。J. Reprod. Dev. 64:209-215,2018。 13)Mizuno N,Mizutani E,Sato H等:通过腺相关病毒载体通过CRISPR/Cas9介导的基因组编辑实现胚胎内基因盒敲入。iScience。9:286-297,2018。 14)Yoon Y,Wang D,Tai PWL等:利用重组腺相关病毒在小鼠胚胎中精简体外和体内基因组编辑。Nat. Commun. 9 : 412, 2018。15)Takahashi G, Gurumurthy CB, Wada K, 等:GONAD:通过输卵管核酸递送系统进行基因组编辑:一种新型的小鼠微注射独立基因组工程方法。Sci. Rep. 5 : 11406, 2015。16)Sato M, Ohtsuka M, Nakamura S.:输卵管内滴注溶液作为在体内操纵植入前哺乳动物胚胎的有效途径。New Insights into Theriogenology, InTechOpen, London, 2018, pp 135-150。 17)Sato M,Takabayashi S,Akasaka E 等:基因组编辑试剂在小鼠生殖细胞、胚胎和胎儿体内靶向递送的最新进展和未来展望。Cells。9:799,2020。18)Alapati D,Zacharias WJ,Hartman HA 等:宫内基因编辑治疗单基因肺疾病。Sci. Transl. Med。11:eaav8375,2019。19)Nakamura S,Ishihara M,Ando N 等:基因组编辑成分经胎盘递送导致中期妊娠小鼠胎儿胚胎心肌细胞突变。IUBMB life。 20)Sato T, Sakuma T, Yokonishi T 等:利用 TALEN 和双切口 CRISPR/Cas9 在小鼠精原干细胞系中进行基因组编辑。Stem Cell Reports。5:75-82,2015。21)Wu Y, Zhou H, Fan X 等:通过 CRISPR-Cas9 介导的基因编辑纠正小鼠精原干细胞中的一种遗传疾病
免责声明本文件是作为美国政府赞助的工作的帐户准备的。虽然该文件被认为包含正确的信息,但美国政府,其任何机构,加利福尼亚大学或其任何雇员的董事均未对任何信息,设备,产品或流程的准确性,完整性或有效性,都不会有任何法律责任,或者承担任何法律责任,这些责任是任何信息,设备,产品或流程所披露或代表其私人私有权利的使用权。以此处提到任何特定的商业产品,流程或服务的商标,商标,制造商或其他方式,并不一定构成或暗示其认可,推荐或受到美国政府或其任何机构或加州大学摄政的认可,建议或偏爱。本文所表达的作者的观点和意见不一定陈述或反映美国政府或其任何机构的观点或加利福尼亚大学的摄政。