尽管靶向疗法已经发展起来,传统的合成的改善病情的抗风湿药物 (csDMARDs) 仍然是治疗类风湿性关节炎 (RA) 的基石。我们对治疗建议和有关类风湿性关节炎治疗新见解的论文进行了文献检索。甲氨蝶呤被认为是“锚定药物”,因为它作为单一疗法以及与其他常规和靶向药物联合使用时都具有很高的疗效。来氟米特和柳氮磺吡啶是可靠的替代品,而 (羟基) 氯喹主要与其他 csDMARD 联合使用。鼓励在所有治疗阶段使用它们——与靶向药物联合使用,以及与其他 csDMARD 联合使用。鉴于有证据证明 csDMARD 联合使用与靶向药物与 csDMARD 联合使用相比具有 (几乎) 相同的疗效和安全性,因此在低收入环境中联合使用不同的 csDMARD 尤其具有吸引力。本综述的目的是提供对每种 csDMARD 的药理学及其在治疗算法中的地位的临床导向见解。
咸水滴灌是解决干旱地区淡水短缺问题的一个潜在解决方案。然而,长期使用会使土壤盐分积累并降低磷 (P) 的有效性。生物炭和秸秆改良剂已被证明可以减轻这些影响,但它们在调节长期咸水灌溉下参与磷转化的微生物基因方面的机制仍不清楚。本研究旨在评估生物炭和秸秆掺入对盐灌棉田土壤微生物群落结构和磷有效性的影响。基于 14 年的田间试验,开发了三种处理方法:仅咸水灌溉 (CK)、咸水灌溉加生物炭 (BC) 和咸水灌溉加秸秆 (ST)。结果表明,这两种改良剂都显著提高了土壤含水量、有机碳、总磷、有效磷和无机磷组分 (Ca 10 -P、Al-P、Fe-P 和 OP),同时降低了土壤电导率和 Ca 2 -P 和 Ca 8 -P 组分。生物炭增加了 Chloro flexi、Gemmatimonadetes 和 Verrucomicrobia 的相对丰度,而秸秆则促进了 Proteobacteria 和 Planctomycetota 的丰度。两种处理均降低了几种 P 矿化基因(例如 phoD、phoA)的丰度并增加了与 P 溶解相关的基因(例如 gcd)。相关性研究表明,微生物种群和 P 循环基因与土壤特性紧密相关,其中 Ca 2 -P 和 Al-P 是重要的介质。通常,在长期含盐灌溉下,生物炭和秸秆改良剂可降低土壤盐分,提高土壤 P 的有效性,降低磷循环相关微生物基因的表达并改善土壤特性。这些结果使它们成为可持续土壤管理的绝佳技术。
改善土壤健康对于提高非洲小农户的作物生产力、肥料利用效率和应对气候变化影响的能力至关重要。增加矿物肥料的使用对于提高作物产量和残渣返还至关重要。然而,必须考虑同时使用富含碳 (C) 的有机物质和矿物肥料,以维持土壤健康并提高肥料利用效率。有人提出,增加矿物肥料的使用而不增加富含碳的有机物质可能无法长期增强土壤有机碳 (SOC) 和土壤健康。当通过矿物肥料增加不稳定营养库时,它会降低微生物碳的利用效率,从而阻碍 SOC 的形成和稳定。这种效率降低可能导致更大比例的返还植物残渣通过微生物呼吸以二氧化碳的形式流失,而不是被纳入 SOC 库。然而,可以通过同时施用大量有机改良剂(如堆肥、粪肥或生物炭)来减轻这种影响,这些有机改良剂可以提供均衡的营养和碳底物供应,以支持微生物活动并增强 SOC 的形成。
在世界上发达的温带地区,育种者的缓慢而有效的选择,随后在本世纪采用科学育种计划,导致在每种物种的少数品种中实现高水平的性能。这最终导致了欧洲和其他地方的许多当地低生产品种的替换为高度生产的“改良剂”品种。在温暖国家对动物产品的需求不断增长,导致这一政策在全球范围内遵循。由于可以通过人工授精(AI)替换人口,因此在欧洲已经发生的规模上存在遗传损耗的危险。此外,这种大规模评分的政策正在在可能不是最理想的气候中。这些基因可以很容易地导入(例如作为精液),但是它们所适应的环境不太容易复制。在许多情况下,系统的杂交程序比定为温带品种更合适。这样的计划需要保留当地改编的品种。
摘要 近年来,精准医疗方法根据患者的个体情况定制医疗方案,并结合基因、环境和生活方式的变化,已经改变了许多医学领域的医疗保健,最显著的是肿瘤学。将类似的方法应用于帕金森病 (PD) 可能会促进疾病改良剂的开发,这些药物可能有助于减缓病情进展,甚至可能避免一组高危人群的病情发展。迫切需要进行此类试验,部分原因是临床试验的负面结果,在临床试验中,干预措施将所有 PD 患者视为一个同质群体。在这里,我们回顾了目前在 PD 精准干预方面发展的障碍。我们还回顾并讨论了针对 PD 遗传形式(即 GBA 相关和 LRRK2 相关 PD)的临床试验。
结果:初步搜索显示有 765 项研究。根据纳入标准,只有 10 篇文章符合条件,这些文章报告了服用不同药物后唾液变化对 MRONJ 的影响。共纳入 272 例 MRONJ(35% 为女性,32% 为男性,32% 未报告性别),诊断时平均年龄为 66 岁。接受双膦酸盐、类固醇、化疗、沙利度胺、干扰素和激素治疗的患者唾液流量减少与 MRONJ 发生之间的关联显著更高。此外,由于唾液微生物组谱、细胞因子谱、白细胞介素、亚牛磺酸和结合蛋白的变化,双膦酸盐、地诺单抗和其他骨改良剂显示出发生 MRONJ 的风险显著增加。
急性肾脏损伤(AKI)是一种危重疾病,死亡率很高,并且经常发展为慢性肾脏疾病,而没有特定原因治疗。了解其机制对于识别生物标志物和开发靶向疗法至关重要。特别是,在许多疾病模型中都研究了基因治疗,包括siRNA,特别是通过免费序列沉默的靶基因,其中一些药物/方法正在临床试验中。但是,将基因改良剂传递到所需细胞已被证明非常具有挑战性。本期“急性肾脏损伤:分子机制和有针对性的治疗方法”,邀请了有关AKI病理生理学,生物标志物和治疗策略的研究和审查文章。我们欢迎对临床前研究和旨在改善肾脏疾病结局并提高精确医学的贡献。
对复杂疾病(例如糖尿病)遗传基础的机械理解在很大程度上是由于影响疾病表型的渗透率和/或表现的遗传疾病改良剂的活性而难以捉摸。面对这种复杂性,单基因突变(单基因糖尿病)引起的罕见形式可用于模拟单个遗传因素对胰腺B细胞功能障碍的贡献和葡萄糖稳态的分解。在这里,我们回顾了蛋白质编码和非蛋白质编码遗传疾病修饰对糖尿病亚型发病机理的贡献,以及人类多能干细胞(HPSC)的生成,分化和基因组编辑的最新技术进步如何启用基于细胞疾病模型的发展。最后,我们描述了一种疾病修饰的发现平台,该平台利用这些技术使用诱导的多能干细胞(IPSC)鉴定出新的遗传修饰者,这些干细胞(IPSC)源自由杂合突变引起的单基因糖尿病患者。
尽管 ISS 是一种有效且具有潜在经济效益的技术,但以温室气体 (GHG) 排放衡量,它也可能产生大量的碳足迹。例如,普通波特兰水泥 (PC),也称为 I 型 PC,是 ISS 中最常用的试剂之一,每生产一吨 PC 就会产生多达约 1,800 磅 (lbs) 的二氧化碳 (CO 2 )。典型的 PC 应用率为每立方码 (CY) ISS 处理土壤约 400 磅 PC,仅 PC 生产一项,就相当于每处理一个 CY 产生约 360 磅 CO 2 的温室气体排放率,或几乎与添加到温室气体排放中的改良剂质量相同。作为参考,按照这种典型的应用率,用 ISS 处理 10,000 CY 土壤将相当于 360 万磅。二氧化碳排放量,大约相当于约 200 户家庭一年的排放量,或 360 辆汽油驱动的乘用车一年的排放量。1