1 为实现这一优先事项,“服务不足的学生”是指属于以下一个或多个子群体的学生:生活贫困或由贫困学生集中的学校提供服务的学生、有色人种学生、联邦承认的印第安部落成员、英语学习者、失联学生、与技术脱节的学生、移民、无家可归或住房无保障的学生、女同性恋、男同性恋、双性恋、跨性别者、酷儿或疑似性取向者或双性人 (LGBTQI+)、寄养学生、没有移民身份证明文件的学生、怀孕学生、育儿学生或看护学生、受到司法系统影响的学生(包括曾被监禁的学生)、家庭中第一个接受高等教育的学生、成绩明显低于年级水平的学生以及与军人或退伍军人有关的学生。
CRISPR-Cas9 介导的基因组编辑的第一步是切割与 CRISPR 向导 RNA (gRNA) 中所谓的间隔序列互补的目标 DNA 序列。然而,一些 DNA 序列对 CRISPR-Cas9 切割具有抵抗性,这至少部分是由于 gRNA 折叠错误造成的。为了解决这个问题,我们设计了 gRNA,使其恒定部分具有高度稳定的发夹结构,并通过化学修饰进一步增强了它们的稳定性。“基因组编辑优化锁定设计”(GOLD)-gRNA 将基因组编辑效率提高了约 1000 倍(从 0.08% 到 80.5%),其他不同靶标的平均效率提高了 7.4 倍。我们预计,无论间隔序列组成如何,这种改进的 gRNA 都将实现高效编辑,并且在所需的基因组位点难以编辑时将特别有用。
摘要:本文讨论了一种针对脑肿瘤的医学图像分割改进模型,该模型是一种基于U-Net架构的深度学习算法。在传统U-Net基础上,引入GSConv模块和ECA注意力机制,提升模型在医学图像分割任务中的表现。通过这些改进,新的U-Net模型能够更高效地提取和利用多尺度特征,同时灵活地聚焦重要通道,从而显著提高分割效果。在实验过程中,对改进的U-Net模型进行了系统的训练和评估。通过观察训练集和测试集的loss曲线,我们发现两者的loss值在第8个epoch之后迅速下降到最低点,随后逐渐收敛并趋于稳定。这表明我们的模型具有良好的学习能力和泛化能力。此外,通过监测平均交集比(mIoU)的变化,我们可以看到在第35个epoch之后,mIoU逐渐趋近于0.8并且保持稳定,这进一步验证了模型的有效性。与传统U-Net相比,基于GSConv模块和ECA注意机制的改进版本在分割效果上表现出明显的优势,特别是在脑肿瘤图像边缘的处理上,改进模型能够提供更为准确的分割结果,这一成果不仅提高了医学图像分析的准确率,也为临床诊断提供了更可靠的技术支持。综上所述,本文提出的基于GSConv模块和ECA注意机制的改进U-Net模型为脑肿瘤医学图像分割提供了一种新的解决方案,其优越的性能有助于提高疾病的检测和治疗效果,在相关领域具有重要的意义。未来希望进一步挖掘该方法在其他类型医学图像处理中的应用潜力,推动医学影像事业的发展。
图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
I.在2024年6月3日至7日,针对东非地区数字整合计划(EA -RDIP,P176181)进行了项目实施支持任务(ISM)。作为该更广泛的地区项目的一部分,南苏丹共和国的混合动力(虚拟和面对面)任务于6月3日 - 7112023在南苏丹的朱巴举行。南苏丹的任务由Naomi 1-Lalewood(Tane Tean Leader,高级数字开发专家)领导,由Victor Kyalo(高级数字发展专家),Ariic David Reng(数字发展顾问),Michael Okuny(高级财务管理专家)和Ocheng Kenneth Kenneth Kaneth Kaunda Odek(高级生产专家)组成。Giacomo Assenza(网络安全专家)和Dereje Agonafir Hablewold(高级环保专家)和Jennifer Gui(南苏丹项目焦点,高级数字发展专家)实际上加入了任务。
由于当前范式正在经历的进步,因此出现了对运输系统的抽象新挑战。自动驾驶汽车的突破引起了人们对骑行舒适的担忧,而近年来污染了污染的担忧。在自动汽车模型中,预计驾驶员将成为乘客,因此,他们将更容易受到骑行不适或运动疾病的困扰。相反,由于对气候和人们健康的影响,因此不应搁置生态驾驶的含义。因此,对上述点的联合评估将产生积极影响。因此,这项工作提出了一个自组织的基于地图的解决方案,以评估个人从生态驾驶的角度考虑其驾驶风格的骑行舒适特征。为此,使用了从仪器的汽车中获得的数据集来对驱动程序进行分类,以分类其缺乏骑行型和生态友好性的原因。一旦对驾驶风格进行了分类,就提出了基于自然的建议,以增加与系统的参与。因此,预计将达到骑行舒适评估参数的潜在提高57.7%,以及预计将达到温室气体排放的47.1%。
我们相信,要为学校带来持久的变革和进步,我们需要努力创造一种高期望的文化,这种文化得到一个有目标的社区的积极支持,这个社区围绕着一个明确的重点团结起来,并尽一切努力实现目标。为此,我们很高兴公布了 2022-2023 学年的学校改进计划。我们相信这个计划将为持续改进奠定基础。我们已将所有利益相关者的理想(学生、教职员工、家长、行政人员和社区成员)纳入该计划。此外,我们致力于让每个人都了解我们学校走向高绩效的历程。
在日常环境中使用物联网(IoT)传感器和设备的压倒性用途(房屋,医院,酒店,制造地板,仓库,零售店,机场,智能城市等。),如今,实时感知和驱动的长期目标是看到一个宏伟的现实。环境和自适应通信技术可以实现特定特定和不可知论的物联网产品,解决方案和服务的快速增长领域。可以建立并交付给相关人员和系统的跨业务垂直行业的各种情境知识服务和应用程序。多方面的物联网传感器嵌入到各种物理系统中,例如机器人,无人机,飞行引擎,防御设备,医疗器械,电器,厨房用具,消费电子,消费电子,货车,制造机械等。进行此填充是为了不断地监视和测量物理系统的各种参数(日志,结构,操作,健康状况,绩效,安全性等)。IoT设备和传感器部署在工作,散步,购物,社交和放松的地方是连接和数字化的实体。目标是使这些设备和传感器能够在其操作,输出和产品方面具有智能。这些要素在我们的个人,社会和专业环境中大量部署在他们的决策,交易和行为中必须具有认知和认知。数字化的实体有权收集在其环境中生成的多结构数据,清洁和关键,以实时发射可行的见解。普通的工件和文章与技术驱动的实时数据捕获,存储,处理和发音的力量进行了数字化,连接和智能。数字化和数字化技术和工具在将原始数据转换为信息和知识方面派上用场。人工智能(AI)是最有效,最深刻和相关的技术范式,可以简化,简化和加快将批处理和流数据分流为有用知识的过程。边缘AI的开创性概念(替代边缘智能,设备数据处理等)是两种强大技术的融合:边缘计算和人工智能。
教育部要求学校遵守其制定的儿童保护程序。我们的管理委员会已书面同意这样做。是所有教师都知道这些程序,我们已将这些程序以及我们如何遵守这些程序告知所有家长。是我们的指定联络人 (DLP) 是 Aideen Maher(校长)
在这项工作中,我们证明,由于现有评估协议和数据集中的不足,因此有必要重新审视并全面研究Mul-timodal零射击学习(MZSL)问题问题。具体来说,我们解决了MZSL方法面临的两个主要挑战。 (1)既定基线的情况通常是无与伦比的,而且有时甚至是有缺陷的,因为现有的评估数据集通常与培训数据集有一些重叠,因此违反了零照片范式; (2)大多数现有的方法都偏向可见的类,这在对可见和看不见的类别进行评估时会大大降低性能。为了应对这些挑战,我们首先引入了一个新的多模式数据集,用于零照片评估,称为MZSL-50,其中有4462个视频来自50个广泛多元化的类别,并且与培训数据没有重叠。此外,我们提出了一种新型的多模式零射击变压器(MZST)体系结构,该体系结构利用了吸引瓶颈进行多模式融合。我们的模型可以直接预测语义表示,并且在将偏见降低到可见的类别方面表现出色。我们进行了广泛的消融研究,并在三个基准数据集和我们的新型MZSL-50数据集上实现最先进的结果。具体来说,我们提高了传统的MZSL绩效2。1%,9。81%和8。 vgg-sound,UCF-101和ActivityNet的68%。 最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。 181%和8。vgg-sound,UCF-101和ActivityNet的68%。最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。1
