系统 • EA-18G 咆哮者是一种舰载雷达和通信干扰机。 • 双座 EA-18G 取代了海军的四座 EA-6B。新的 ALQ-218 接收器、改进的连接性和链接显示器是主要的设计特点,旨在减少操作员的工作量,以支持 EA-18G 的双人机组。 • 将机载电子攻击 (AEA) 系统集成到 F/A-18F 中,包括: - 改进的 EA-6B 改进型能力 III ALQ-218 接收系统 - 先进机组站 - 旧式 ALQ-99 干扰吊舱 - 通信对抗系统 - 扩展的数字 Link 16 通信网络 - 电子攻击单元 - 支持干扰时通信的干扰消除系统 - 通过多任务先进战术终端接收卫星的能力 • 其他系统包括: - 有源电子扫描阵列雷达 - 联合头盔提示系统 - 高速反辐射导弹 (HARM) - AIM-120 先进中程空对空导弹 (AMRAAM)
近年来,可再生能源渗透率的提高造成了新的拥堵模式。由于电网不是为新模式设计的,运营商可能需要削减可再生能源,以将传输流量保持在可接受的范围内。使用灵活交流输电系统 (FACTS) 设备的输电线路阻抗控制已被提议作为一种缓解输电系统拥堵和提高可再生能源利用率的方法。在本文中,我们进行了一项全面的研究,以深入了解 FACTS 实施对可再生能源整合和碳减排的影响。该研究考虑了可再生能源渗透率、系统负载模式、可再生能源发电位置和 FACTS 设备位置的变化。此外,还使用了来自著名区域输电组织 (RTO) 的发电组合数据来获得更现实的结果。对具有两阶段随机机组组合模型的改进型 RTS-96 系统进行了模拟研究。结果表明,尽管阻抗控制在降低成本方面是有效的,但它在促进具有著名廉价化石燃料发电厂的系统中可再生能源整合方面存在局限性。
RAUZYUW RUOIAAA0947 1981929-UUUU--RHOISAA RUOIAAA。znr uuuuu r 171859Z Jul 18 FM ComsfltForcom Norfolk va to Ruoiaaa/CNO WASHINGTON DC zen/compacflt pear harbor hi Ruoiaa/comnavsesyscom Washington DC Iaa/comnavsyscom mechanicsburg pa Ruoiaa/Chnfo Washington DC Ruoiaaa/Nexcom Norfolk va zen/dla ft belvoir va bt unclas pasts to offices: comusfrocom va/n41///n lt Part Harbor Hi/n4// Comsublant Norfolk va/n41// comnavarfpac san diego ca/n41// comnavseasyscom WASHINGTON DC/Sea05// ComnaVirlant NorFolk 41// Comsubpac pearl harbor hi/n41// secinfo/u/u/-gnadmin,usmtf,2008/comusfltforcom norfolk va// Subj/Improved Flame Resistant variant Flame Resistant Variant (FRV) Coverall// Ref/A/MSGID:Genadmin/Comuusfltforcom/051859ZFeb2 Read 4998/Jun2018// NARR/REF a is comusfltforcom introduction of the improved flame resistant variant (IIFRV) Coverall Message.参考 B 是 COMNAVSAFECEN 浮动安全咨询 3-18 改进型阻燃变体 (IFRV) 工作服要求和穿着指导。参考 C 是 2018 年综合浮动招聘指南海外文本/备注/1。这是一次美国协调的行动。舰队司令部(USFF)N41;太平洋舰队(PACFLT)N4 消息宣布 FRV 连体服结束生产,并提供有关改进型阻燃变体(IFRV)连体服穿着方式的附加指导。2.背景。根据参考文献 (A),USFF 和 PACFLT 于 2018 年 2 月推出 IFRV 连体服作为经批准的舰队组织服装,以取代传统的阻燃变体 (FRV) 连体服。舰队部队被指示继续订购 FRV 工作服,直到库存充分消耗为止。FRV 库存已达到最低水平,自 2018 年 6 月 30 日起已从供应系统中停止供应。所有未处于运输状态的未完成的 FRV 请求都应被取消,并使用相应的 IFRV 尺寸重新排序。3.IFRV 工作服。根据参考文献 B,IFRV 连体服符合危险风险类别 2。然而,它们不符合
摘要:图像去噪是一种从图像中去除噪声以创建清晰图像的过程。它主要用于医学成像,由于机器故障或为了保护患者免受辐射而采取的预防措施,医学成像机器会在最终图像中产生大量噪声。可以使用多种技术来避免在最终打印之前图像中出现此类失真。自动编码器是用于在最终打印之前对图像进行去噪的最著名软件。这些软件不是智能的,因此生成的图像质量不佳。在本文中,我们介绍了一种具有深度卷积神经网络的改进型自动编码器。与传统的自动编码器相比,它可以创建质量更好的图像。在张量板上使用测试数据集进行训练后,在具有各种形状的不同数据集上测试改进的自动编码器。由于几个原因,结果令人满意但不理想。尽管如此,我们提出的系统仍然比传统的自动编码器表现更好。
a. 需求来源。海军陆战队对 M1A1 坦克的需求记录在陆军部 (DA) 批准的 MBT 修订物资需求(工程开发) (MN (ED)) 中,CDOG Para 336a(13),ACN 20337 (U),最初由 CMC 信函 RDD-26(1975 年 9 月 22 日,主题:MBT 所需作战能力 (ROC))批准,并由 CMC 信函 RDD260601np(1987 年 12 月 3 日,主题:MBT ROC)修订。CMC 信函指出,MN(ED) 符合美国海军陆战队要求,另外还要求坦克配备车辆导航辅助装置和深水涉水套件 (DWFK)。海军陆战队要求 M1A1 能够在两栖环境中作战,包括在美国海军两栖舰艇上运输。海军陆战队计划采购 M1A1 坦克系统并将其部署到选定的现役舰队海军陆战队 (FMF) 和预备役坦克部队,以替代 M60A1 可靠性改进型选定设备 (RISE)/被动 (R/P) 坦克。M1A1 坦克将按照年度评审中商定的现有生产线配置修改进行采购。
直到 2015 年初,他一直担任 GlycoVaxyn(瑞士)监事会主席,该公司是一家被葛兰素史克收购的创新疫苗公司,直到 2020 年,他一直担任 Themis Bioscience(奥地利)董事长,该公司是一家被默克 Shark Dhome 收购的疫苗/免疫疗法公司。他是奥地利生物技术公司 Intercell(现为 Valneva)的前首席执行官。2001 年至 2011 年在 Intercell 任职期间,他将公司从一家私人初创企业打造为一家拥有 400 多名员工的上市国际组织。作为首席执行官,他获得了全球监管部门的批准并领导了改进型日本脑炎疫苗的推出,并监督了建立和推进广泛的疫苗开发组合的努力。在加入 Intercell 之前,Zettlmeissl 博士曾担任 Chiron Behring 的董事总经理,并在 Chiron Corp. 和 Behringwerke 担任生物制药研发和技术运营的高级管理职位。2010 年,他在世界疫苗大会上被评为年度疫苗生物技术首席执行官。Zettlmeissl 博士拥有雷根斯堡大学生物化学博士学位,并在巴黎巴斯德研究所获得病毒学博士后奖学金。
摘要:2020 年,美国报告了超过 10,000 起鸟击事件,平均每年修复费用超过 2 亿美元,全球修复费用上升至 12 亿美元。这些鸟类与飞机的碰撞对人类安全和野生动物构成了重大威胁。本文介绍了一种专用于监控机场上空空间的系统,用于定位和识别移动物体。该解决方案是一种基于立体视觉的实时鸟类保护系统,它使用物联网和分布式计算概念以及先进的 HMI 来提供设置的灵活性和可用性。为了实现高度定制,提出了一种具有自由定向光轴的改进型立体视觉系统。为了为中小型机场提供可负担得起的市场定制解决方案,使用了用户驱动的设计方法。在 MATLAB 中实现并优化了数学模型。在真实环境中验证了所实现的系统原型。使用带有 GPS 记录器的固定翼无人机对系统性能进行定量验证。获得的结果证明了该系统实时检测和尺寸分类的高效性,以及高度的定位确定性。
摘要:可再生能源发电是应对能源消耗快速增长的一种有希望的解决方案。然而,可再生资源(如风能、太阳能和潮汐能)的可用性是不连续和暂时的,这对下一代大型储能装置的生产提出了新的要求。由于成本低、原材料极其丰富、安全性高和环境友好,水系可充电多价金属离子电池(AMMIB)最近引起了广泛关注。然而,一些挑战阻碍了 AMMIB 的发展,包括其电化学稳定性较窄、离子扩散动力学较差以及电极不稳定。过渡金属二硫属化物(TMD)因其独特的化学和物理性质而被广泛研究用于储能装置。层状 TMD 的宽层间距离对于离子扩散和插层来说是一种很有吸引力的特性。本综述重点介绍了 TMD 作为基于多价电荷载体(Zn 2+ 、Mg 2+ 和 Al 3+ )的水系可充电电池阴极材料的最新进展。通过本综述,重点介绍了高性能 AMMIB 的 TMD 材料的关键方面。此外,还讨论了开发改进型 TMD 的其他建议和策略,以启发新的研究方向。
AIDP – 陆军情报数据平台 ALE – 空射效应 ABIS – 自动生物特征识别系统 BAT-A – 生物特征识别自动化工具集 – 陆军 BCT – 旅战斗队 CIRCM – 通用红外对抗 CMOSS – 指挥、控制、通信、计算机、网络、情报、监视、侦察(C5ISR)/电子战模块化开放标准套件 CMWS – 通用导弹预警系统 EAB – 旅以上梯队 EW – 电磁战 EWPMT – 电子战规划与管理工具 FLOT – 部队前线 GLE – 地面发射效应 HADES – 高精度检测与利用系统 ITDS – 改进型威胁检测系统 JCAP – 联合通用接入平台 LDS – 激光探测系统 LIMWS – 有限临时导弹预警系统 MEMSS – 模块化电磁波谱系统 MFEW – 多功能电子战 MRL – 多管火箭发射器 NESO – NAVWAR电子战系统高架 PNT – 位置导航授时 RWR – 雷达预警接收器 S2AS – 频谱态势感知系统 SAM – 地对空导弹 TITAN – 战术情报目标访问节点 TCE – 战术网络设备 TLS – 地面层系统 TRAC – 战术射频应用底盘 UAV – 无人驾驶飞行器
摘要:传统的电池充电技术使用电网能量为连接的负载提供服务,这最终增加了电网的负担,也增加了消费者的用电成本。因此,本文提出了一种新的改进型电池。所提出的电池使用可再生、可持续和环保的有机材料而不是电网来充电。这种类型的电池在偏远地区非常有用,因为这些地区几乎没有或根本没有电力供应。这项研究的主要目的是为经济贫困/贫困的人和农村地区提供能源,因为这些地区的负荷削减是一个主要问题。所提出的电池,即生物电池,使用土壤作为有机材料进行充电。土壤具有独特的成分,它含有不同种类的矿物质、微生物和基本有机物质,因此,土壤的电导率完全取决于这些因素。土壤电池的工作原理是从两个电极之间的电位差产生电能。因此,在这项工作中,土壤和水的组合用于为电池充电。此外,尿液、堆肥和盐水等其他废料也与土壤结合用于实验目的。观察发现,与其他物质相比,土壤与水的结合能产生最高的电压。