ldoe形成性评估资源,以支持课堂上的形成性评估,该部门发布了与路易斯安那州科学学生标准相关的离散项目和项目集库。这些项目以及2025年的LEAP练习测试项目可以与高质量课程的指导一起使用,作为学生证明自己学到的知识的机会。ldoe形成性评估资源可以在K-12科学资源网页上找到。
另一方面,在 IOT 中,RF 输入信号施加在阴极和栅极之间,栅极位于阴极附近且在阴极前方(见图1)。因此,电子束在枪区域本身内进行密度调制。向栅极施加相对于阴极电位约负 80 伏的直流偏置电压 (V G ),以便在没有 RF 驱动的情况下,约 500 mA 的静态电流流动。阴极保持在约 -30 kV 的负束电位,因此密度调制的束流通过接地阳极中的孔径加速到输出部分。在这里,功率通过传统的速调管输出系统提取,但使用双调谐腔系统来提供欧洲和世界许多其他地区超高频电视传输所需的 8 MHz 信道带宽。最后,电子束在传统设计的铜收集器中消散 - 根据所涉及的功率水平,可以是空气冷却的,也可以是液体冷却的。
本文介绍了一种用于雷达应用的新型 X 波段碳化硅 (SiC) 共面波导 (CPW) 单片微波集成电路 (MMIC) 高功率放大器 (HPA) 设计。在设计中,采用了 0.25 μ m γ 形栅极和高电子迁移率晶体管 (HEMT),它们采用了碳化硅基氮化镓技术,因为它们具有高热导率和高功率处理能力。此外,在 8.5 GHz 至 10.5 GHz 的频率范围内,反射系数低于 -10 dB,可产生 21.05% 的分数带宽。此外,MMIC HPA 在 2 GHz 带宽内实现了 44.53% 的功率附加效率 (PAE),输出功率为 40.06 dBm。此外,由于 MMIC HPA 具有高输出功率、宽工作带宽、高 PAE 和紧凑尺寸,因此非常适合用于 X 波段有源电子扫描阵列雷达应用。索引术语 — 有源电子扫描阵列 (AESA) 雷达、共面波导 (CPW)、碳化硅 (SiC) 上的氮化镓 (GaN)、高电子迁移率晶体管 (HEMT)、单片微波集成电路 (MMIC)、高功率放大器 (HPA)。
在过去的三十年中,气候变化,生物多样性损失和土地退化的层叠危机加速并加剧了,强调了对一致行动的需求。人类的压力将在未来几年推动一百万种物种灭绝,到2050年,所有物种的30-50%的灾难性风险。上升的温室气体排放量主要是由燃烧化石燃料和不可持续的土地使用产生的,比1990年开始国际气候谈判时高出60%以上。人类的影响力无疑使大气,海洋和土地加热,而气候变化加剧了贫困和不平等,尤其是性别,种族,阶级,种姓,年龄,年龄,土著地位,移民地位和残疾人的贫困和不平等,使所有人类和非人类生命都处于危险之中。
学习单元 本课程的学习单元如下: 模块 1 软件的基本概念 单元 1 计算机软件 单元 2 什么是软件工程 单元 3 软件工程的历史 单元 4 软件工程师 单元 5 软件危机 模块 2 软件开发 单元 1 软件开发概述 单元 2 软件开发生命周期模型 单元 3 模块化 单元 4 伪代码 单元 5 编程环境案例工具和 Hipo 图 模块 3 实施和测试 单元 1 实施 单元 2 测试阶段 单元 3 软件质量 单元 4 兼容性 单元 5 验证 模块 4:形式化方法 单元 1:一般信息 单元 2:形式化方法简介 单元 3:形式化方法的方法及其在软件开发中的应用 单元 4:命题 单元 5:谓词 单元 6:集合 单元 7:系列或序列
学习单元 本课程的学习单元如下: 模块 1 软件的基本概念 单元 1 计算机软件 单元 2 什么是软件工程 单元 3 软件工程的历史 单元 4 软件工程师 单元 5 软件危机 模块 2 软件开发 单元 1 软件开发概述 单元 2 软件开发生命周期模型 单元 3 模块化 单元 4 伪代码 单元 5 编程环境案例工具和 Hipo 图 模块 3 实施和测试 单元 1 实施 单元 2 测试阶段 单元 3 软件质量 单元 4 兼容性 单元 5 验证 模块 4:形式化方法 单元 1:一般信息 单元 2:形式化方法简介 单元 3:形式化方法的方法及其在软件开发中的应用 单元 4:命题 单元 5:谓词 单元 6:集合 单元 7:系列或序列
环形石墨烯(TG)代表了一类新的碳纳米结构,将曲率驱动的场限制与量子增强电荷相干性集成在一起。与常规的基于碳的增强剂不同,TG表现出源自无折叠的实验和理论证据链的3×10 9的电磁场扩增因子(AF)。曲率诱导的定位和等离子体杂交理论(PHT)的协同作用使van der waals(VDW)在青铜基质中的膨胀从0.4 nm到577 nm,从而使超高的TG浓度仅为0.005 wt%,以驱动机械性能的转化增强。将其纳入无铅铜制时,TG将耐磨性提高458%,并使CO₂排放量减少78.2%,从而提供了史无前例的性能和可持续性组合。这些作用源于量子等离子体加固机制,这些机制改善了纳米级的应力转移,负载分布和分子内聚力。与常规合金元素(例如PB或Ni)不同,依赖于散装物质特性的PB或Ni,TG从根本上改变了通过纳米级力重新分布来改变耐药性。这项研究将TG确立为下一代金属纳米复合材料的破坏性材料,将基本纳米科学与与行业相关的摩擦学验证合并。与全球第八大卡车制造商Scania合作进行,该验证证实了其直接的工业相关性,证明了现实世界中的适用性在高性能耐磨应用中。连接电磁场放大,VDW扩展和摩擦学验证的明确证据链支持TG的量子工程增强功能,将其定位为高级制造和重型产业的基石。
摘要在这项工作中,将牛津纳米孔测序作为量化放大DNA异质性的可访问方法。此方法可以快速量化缺失,插入和取代,每个突变误差的概率及其在复制序列中的位置。放大技术测试的是传统的聚合酶链反应(PCR),具有不同水平的聚合酶保真度(OnETAQ,phusion和Q5),以及滚动圆扩增(RCA)和PHI29聚合酶。还评估了使用细菌扩增的质粒扩增。通过分析每个样本中大量序列中误差的分布,我们检查了每个样本中的异质性和误差模式。该分析表明,Q5和渗流聚合酶表现出在扩增的DNA中观察到的最低错误率。作为二级验证,我们分析了使用细胞游离表达与放大DNA合成的SFGFP荧光蛋白的发射光谱。易易受错误的聚合酶链反应证实了报道蛋白发射光谱峰宽度与DNA误差率的依赖性。所提出的纳米孔测序方法是量化其他基因扩增技术准确性的路线图,从而使它们被发现,从而实现了所需蛋白质的更无均匀的细胞表达。
在ER掺杂的磷酸盐玻璃中淬灭,用于紧凑的光激光器和放大器 / Pugliese,迭戈; Boetti,Nadia Giovanna; Lousteau,J。; Ceci Ginistrelli,Edoardo; Bertone,Elisa; Geobaldo,Francesco;米兰,丹尼尔。- 在:合金和化合物杂志。- ISSN 0925-8388。-657:(2016),pp。678-683。[10.1016/j.jallcom.2015.10.126]
具有高效率的操作和清洁能量过渡。[2]与化学成分一起,分子间相互作用直接通过将分子堆积管理到晶体中来确定有机固体的功能。与单个分子[3a,b]相比,这种能量的增加导致晶体的电子结构发生变化,这打开了调整所得有机晶体(OC)的光学,电子和传输特性的可能性。然而,这种强大的间隔相互作用可确保OC的结构元素之间有效的电荷转移,进而可以通过淬火过程降低光发射性能。[3F-K]相反,通过引入氢键[3C-E]来降低该能量的降低,可保留单个分子及其光发射特性的电子特征,并扩大了分子堆积的方式,并提供了OC生长在任意表面上的控制。反过来,这些对于轻松产生有效的连贯和不连贯的光源至关重要。[1C]