卷积神经网络(CNN)最近已成为腹侧视觉流的有前途的模块。虽然主要视觉皮层(V1)的当前最新模型已经从具有对抗性示例的训练中浮出水面并广泛增强了数据,但这些模型仍然无法解释V1中观察到的关键神经特性,这些神经特性是由生物逻辑电路引起的。为了解决这一差距,我们系统地将神经科学衍生的架构组件纳入CNN中,以确定一组更全面地解释V1活动的机制和体系结构。通过使用建筑组件增强任务驱动的CNN,这些组件模拟了中心旋转的拮抗作用,局部接收场,调整归一化和皮质放大倍数,我们以潜在的表示模型来产生V1神经活动和调谐特性的潜在模型。此外,对这些成分的学习参数和最大激活评估网络神经元的刺激的分析为它们在解释V1的神经特性中的作用提供了支持。我们的结果突出了神经ai领域的重要进步,因为我们系统地建立了一组建筑成分,这些组件有助于v1的前所未有的解释。可以从越来越准确的大脑内部模型中收集的神经科学见解有可能大大推进神经科学和人工智能的领域。
投影方法 3 芯片 DMD 反射方法 DMD 规格 大小、类型、分辨率 1.2 英寸,12° 倾斜角,2048 x 1080 像素 主镜头 1.25 至 1.45:1 变焦 1.45 至 1.8:1 变焦 1.8 至 2.4:1 变焦 2.2 至 3.0:1 变焦 3.0 至 4.3:1 变焦 根据安装环境的放大倍数选择。DLP Cinema™ 功能 CineLink™、CineCanvas™、CinePalette™、CineBlack™ 镜头调整功能 电动对焦、变焦、水平/垂直移位、光闸(遮光板)移位范围取决于镜头。输入端子 HDSDI 端口 [BNC] x 2 DVI 端口 [DVI-数字] x 2 外部控制 PC 卡插槽(用于紧凑型闪存卡或无线 LAN 卡)x 1 LAN 端口 [RJ-45] x 2 USB 端口 [Type A] x 1 串行端口 (RS-232C) [D-sub(9 针)] x 1 通用 I/O [D-sub(37 针)] x 1 遥控接口 x 1 环境 工作温度:-10°C 至 35°C (41°F 至 95°F),湿度:10% 至 80%(无凝结) 存储温度:-10°C 至 50°C (14°F 至 122°F),湿度:10% 至 80%(无凝结) 规定 美国:UL60950 FCC Class A 加拿大:CSA60950 ICES-003 A 类 欧洲:EN60950 EN55022 1998,A 类 EN55024-1998 EN61000-3-2 EN61000-3-3 大洋洲:EN60950 AS/NZS 3548 A 类 1995 + A 1/2:1997 日本:J60950 VCCI A 类 亚洲:EN60950 CISPR Pub22
摘要:抗生素敏感性测试对于解决抗生素耐药性的出现和蔓延至关重要。廉价的数字 CMOS 相机可以使用 3D 打印 xyz 平台转换为便携式数字显微镜。通过显微镜检查细菌运动能力可以快速检测微生物对抗生素的反应,以确定其敏感性。在这里,我们介绍了一种用于多路复用抗生素敏感性测试的新型简单微型设备微型显微镜细胞测量系统。该微型设备采用熔融挤出的塑料薄膜条制成,其中包含十个平行的 0.2 毫米直径微毛细管。在 Mueller-Hinton 琼脂(0.4%)中制备两种不同的抗生素,头孢他啶和庆大霉素,以产生一种载有抗生素的微型设备,用于简单的样品添加。选择这种组合是为了与抗生素敏感性测试和运动能力测试的当前标准方法紧密匹配。使用低琼脂浓度可以观察到运动细菌进入毛细血管时对抗生素暴露的反应。该设备使用 Raspberry Pi 计算机和 v2 相机安装在 OpenFlexure 3D 打印数字显微镜上,无需使用昂贵的实验室显微镜。这种廉价便携的数字显微镜平台具有足够的放大倍数来检测运动细菌,同时具有足够宽的视野来监测细菌进入载有抗生素的微毛细血管时的行为。图像质量足以检测不同浓度的抗生素如何抑制细菌运动。我们得出结论,基于 Raspberry Pi 的 3D 打印显微镜与一次性微流体测试条相结合,可以快速、轻松地检测细菌运动,并有可能帮助检测抗生素耐药性。
来自成像方式的误差以及由于与 IC 样品的物理相互作用而直接导致的误差。由于设计实践和制造 IC 所用材料而在 RE 工作流程中引入的噪声被列为“ 代工厂/节点技术特定 ” 误差源。最后,由于人为相互作用而发生的误差列在“ 人为因素 ” 下。讨论这些噪声源的来源文献还介绍了抑制它的方法。例如,可以通过在 IC 芯片表面沉积薄层导电材料(如碳或铂)来防止与成像相关的误差源中的传导 [18, 11]。为避免冗余,这里不再详细讨论除版图特定误差源之外的各个噪声源。版图特定误差源(例如特征尺寸和接近度)是版图综合和所谓设计规则的直接结果。复杂的几何结构只有在成像方式的分辨率能力范围内才能成像。类似地,彼此靠近放置的结构也可能无法有效解析。简而言之,除非使用较小的视野或高放大倍数,否则这些特征可能会被 SEM 截断。表 1 显示了讨论每个错误源及其解决方法的著作。引用的著作中还提供了全面的模型验证。无法抑制或预防的错误源作为合成图像生成工作流程的一部分,以填充数据集。另一个值得关注的是,用于生成数据集的设计布局选择有限。任何数字设计的基本构建块都是标准单元。它们代表基本逻辑门、更复杂的门(例如全加器)和寄存器,并在整个设计中重复出现。流行的商业 IC 设计工具和开源标准单元库(均由 Synopsys 授权用于生成数据集)用于合成和布局布线高级加密标准 (AES) 设计。这些工具分别遵循 90nm 和 32/28nm 工艺设计套件 (PDK) 中指定的设计规则。
ns cc11-(th)-p01:生物分子,酶学和仪器生物分子:生命的化学基础 - 化学键合,涉及生物分子的力和构建块 - 大分子;信息大分子。蛋白质作为信息大分子;氨基酸的化学;多肽的一级,二级和三级结构;肽;肽亚基和第四纪结构, -helix,-薄片和胶原蛋白结构,蛋白质和氨基酸的代谢。碳水化合物的化学 - 单,二糖和多糖。DNA的分子结构,替代DNA结构,圆形和超螺旋DNA,DNA的变性和恢复,DNA的物理和化学稳定性。酶和反应动力学:酶的定义;活性位点,底物,辅酶,辅因子和不同种类的酶抑制剂;酶动力学,两种底物动力学,三种底物动力学,偏离线性动力学;配体结合研究;快速动力学;关联和解离常数;在酶动力学机理分析中使用同位素; pH,温度和同位素标记的底物对酶活性的影响;酶调节的变构模型;底物诱导酶的构象变化。电子显微镜:磁性和静电镜的理论及其焦距;电子显微镜的构造;限制分辨率和有用的放大倍数;对比形成;阴影和染色技术;扫描电子显微镜;标本准备技术;电子显微镜在细胞和分子生物学中的应用;嵌入和切割。仪器:生物系统光谱后的原理和应用:吸收光谱(UV-可见),荧光和磷光,圆形二色性(CD),红外光谱学(IR),共振拉曼光谱;电子旋转共振(ESR),液体闪烁计数器; pH计;超速离心,光学显微镜,光学显微镜;阶段,紫外线和干扰显微镜 - 其基本原理;光学系统和射线图 - 它们在细胞生物学中的应用;荧光显微镜;细胞和组织的微光照射法,荧光活化的细胞分辨率(FACS)。
fi g u r e 1脂质液滴:代谢,形态和组成。(a)主要代谢途径和中间代谢产物的简化方案参与LDS的生物发生和消耗。有关其他详细信息,请参见文本。fa,脂肪酸; FA-COA,酰基辅酶A; CPT1,肉碱棕榈转移酶I; CAC,柠檬酸周期; FASN,脂肪酸合酶; Oxphos,氧化磷酸化; ACC,乙酰辅酶A羧化酶; GPAT,甘油-3-磷酸酰基转移酶; AGPAT,1-酰基-SN-甘油-3-磷酸酰基转移酶; PAP,磷脂酸磷酸酶; DGAT,二甘油类酰基转移酶-1和-2; ACSL,酰基-COA合成酶; ATGL,脂肪甘油三酸酯脂肪酶; HSL,激素敏感脂肪酶; MAGL,单酰基甘油脂肪酶; NCEH,中性胆固醇酯水解酶。(b)内质网中发生的LD生物发生的示意图(ER)。酯化后,中性脂质积聚在ER双层中,形成透镜结构,该结构在ER双层内经过相位分离并成长为形成新生LD的细胞质。细胞质和ER蛋白被募集到LDS表面,促进其生长并萌芽到成熟的LDS中。附件蛋白在此过程中合作。在上面板(红色:TAG的化学结构)中说明了脂肪酸(FA)到三酰基甘油(TAG)中的酯化。(c)。用油酸处理肝HuH7细胞以诱导LD形成16小时(左图)。plin2(绿色)用特异性抗体定位,并用Lipidtox染色中性脂质。(n)表示细胞的核。箭头标记高放大倍数插图中的LD。THP-1细胞进行TEM分析(右图)。脂质液滴由它们的球形形态,相对较低的电子密度和通过单个磷脂单层界定。(d)代表LDS上主要蛋白质的简化方案。(e)该方案包含一些由病原体在宿主细胞中分泌的毒力因子操纵的LD蛋白(黑色)的例子(红色)(有关详细信息,请参见文本)。
本文件总结了适用于指定中央半导体封装的封装鉴定和可靠性测试。所进行的测试能够引发半导体器件和封装相关故障。这些严苛测试的目的是确定与代表性样本大小的正常使用条件相比,故障是否以加速方式发生。通过代表性样本大小的所有适当可靠性测试(无故障)即表示封装合格。此鉴定摘要是针对一系列使用条件的通用鉴定,不适用于极端使用条件,例如军事应用、汽车引擎盖下应用、不受控制的航空电子环境或二级可靠性考虑。鉴定测试说明下面列出的鉴定测试描述作为摘要提供。有关更多详细信息,请参阅括号中所示的适用规范。外部目视检查 (JESD22-B101) 检查成品封装或组件的外表面、结构、标记和工艺。外部目视是一种非侵入性和非破坏性测试。物理尺寸 (JESD22-B100) 此测试旨在确定所有封装配置中器件的外部物理尺寸是否符合适用的采购文件。物理尺寸测试是非破坏性的。 标记持久性 (JESD22-B107) – 仅适用于用墨水标记的器件 标记持久性测试将封装标记置于常用于去除电路板上焊剂的溶剂和清洁溶液中,以确保标记不会变得难以辨认。将器件和刷子浸入三种指定溶剂中的一种中一分钟,然后取出。然后用刷子刷器件十次。冲洗并干燥后,根据指定标准检查器件的可读性。 引线完整性 (JESD22-B105) 引线完整性测试提供用于确定器件引线、焊点和密封完整性的测试。器件会受到各种应力,包括张力、弯曲疲劳和适合引线类型的扭矩。然后在光学显微镜下检查设备,以确定端子和设备主体之间是否有任何断裂、松动或移动的迹象。共面性 (JESD22-B108) 此测试的目的是测量表面贴装半导体设备端子(引线或焊球)在室温下的共面性偏差。内部目视检查 (MIL-STD-750 方法 2075) 此检查的目的是验证内部材料、设计和结构是否符合适用的采购文件。应在足够的放大倍数下检查设备,以验证是否符合适用设计文件的要求。粘合强度 - 拉线(MIL-STD-750 方法 2037 测试条件 C/D)此测试方法的目的是测量粘合强度,评估粘合强度分布,或确定是否符合适用采购文件规定的粘合强度要求。此测试可应用于
背景和目标:印度尼西亚南苏拉威西的Jeneponto Regency的沿海地区受到微塑性污染的严重影响,这对海洋生物(如贝类和鱼类)构成了威胁。这项研究的目的是鉴定存在微塑料聚合物的存在,包括乙烯基氯化物,聚乙二醇,聚氯二氯甲基乙二醇,聚丁乙烯二甲酸酯,聚(异生丁基),异生酯基乙酸甲酸酯,乙酸纤维素硫酸酯和聚硫酸酯,以及鱼类属硫乙烯,和柔化壳壳酸酯,粘依乙烯基酸酯,粘硫乙烯基乙烯基乙烯基酸酯,和乙烯基硅酸盐酸胺壳酸酯,乙烯酸酯乙烯基酸酯,乙烯酸乙烯基酸酯,乙烯基酸磷脂酸酯,乙烯酸酯和硫乙烯基。印度尼西亚的詹蓬托区。方法:直接从Jeneponto Regency沿海水域的12个地点收集了60种贝类和鱼类样品。进行样品制备,包括酶消化和机械破坏,以将鱼类和贝类的有机组织分离为小颗粒。光学显微镜(以100倍和400倍的放大倍数为单位)用于观察形态,并使用改良的Neubeuer改进的计数室来观察每个样品体积的颗粒数。傅立叶转换红外光谱法用于确定聚合物的类型。发现:羽毛蛤clum含有最高数量的微塑料,总计58个项目范围从0.027到4.587毫米。羽毛蛤中微塑料的总丰度范围为0.25至2.14克。kurisi鱼包含22个物品,尺寸为0.085至2.127毫米,总丰度在0.01至0.08件范围内。乙烯基氯化物是微塑料聚合物的主要类型,占所有微塑料聚合物的42%。在鱼类和蛤中鉴定的聚合物的类型包括乙烯基氯,聚乙二醇,聚氯二氯乙二醇,聚丁烯二苯二甲酸酯,聚(异丁基甲基丙烯酸酯),乙酸酯纤维素丁酸丁酯,丁酸丁酯,聚丁二烯,聚二烯丙烯和聚乙烯基和聚氯乙烯。结论:这项研究成功地鉴定出了Jeneponto沿海地区的贝类和鱼类中发现的八种类型的微型聚合物。最常见的是氯化乙烯。这些发现表明,海洋生物和人类暴露于微塑料中,这可能是有害的,但是需要进一步的研究以了解相关的环境健康影响和风险的全部程度。
CIMET Human Vision and Computer Vision Course name: Human Vision and Computer Vision Course code: CIMET HVCV Course level: Master ECTS Credits: 5.00 Course instructors: Sérgio Nascimento & Juan Luis Nieves (University of Granada) Education period (Dates): 2 nd semester Language of instruction: English Prerequisite(s): Module “Color Science” (1 st semester) Expected prior-knowledge: Modules光子学和光学基本原理”(第1个学期)和辐射测定法,来源和探测器”(第二学期)的目标和学习成果:课程的目的是提供对视觉过程的稳固而综合的视野,重点是物理方面以及自动处理信息的自动处理。这种更定量的方法与视网膜和皮质组织的概念以及视觉心理物理学的基本原理相辅相成。尽管该课程的目的是在理论上扎实的基础上,但将在适当和独立的项目开发和研究的情况下,将被视为实践问题和解决问题。在完成本课程后,学生将能够:•在解剖学和功能上确定人类视觉系统的主要组成部分。•应用视觉光学以描述眼睛中的成像过程。•确定对视觉系统施加的物理约束,并将它们与视觉性能的限制联系起来。•识别并描述人类视力的主要心理物理方面,并描述基本的心理物理技术。视觉感知和人类视觉系统的主要组成部分。接受场,LGN和皮层处理。人类视力中的基本数字。•在要教的自动视觉问题主题的背景下描述并应用基本图像处理算法(可以修改):•视觉感知引入。视觉过程:图像形成,转导,编码,视网膜和皮质处理。•视觉光学器件。眼睛的光学,球形和散光的差异,畸变。放大倍数。住宿。对比灵敏度。•光波和苏格兰视觉。光波和苏格兰视觉:光波,苏格兰和介质视觉。光谱敏感性和浦肯野的偏移。晚上近视。视野,空间和时间求和。外部。•颜色感知。颜色感知的基本原理:颜色匹配和三色,光感受器的光谱敏感性。色相取消和对手颜色。颜色恒定。彩色幻觉。获得并继承了色觉不足。•视觉感知的空间和时间方面。对象和形状的感知。对运动的感知。双眼视力和深度感知。立体视力。眼动。Troxler现象强化。•图像质量。评估图像感知质量的图像质量和心理物理方法。•计算机视觉简介。计算机视觉简介:什么是计算机视觉?MARR范式和场景重建,基于模型的视觉。光度立体声。其他用于图像分析的范例:自下而上,自上而下,神经网络,反馈。像素,线,边界,区域和对象表示。“低级”,“中级”和“高级”视觉。•计算机视觉的应用。图像处理形状从X形从阴影发出。阻塞轮廓检测。运动分析。运动检测和运动流动结构。基于对象识别模型的方法。基于外观的方法。不变。
荧光检测核轨迹是一种辐射测量方法,最初是由Akselrod和使用Al 2 O 3:C,Mg单晶的同事开发的(Akselrod等,2006a; Akselrod等,2006b),并成功地引入了应用程序的各个领域(Al.akselenber and kousselrodg,akselrodg and akselrodg and.220; akselrod等人,2006b)。 2018年; Akselrod和Sykora,2013年;在过去的几年中,发现另一种材料适合用作荧光核轨道检测器(FNTD):未含量的氟氟化锂晶体(Bilski和Marczewska,2017; Bilski等,2019b)。LIF中粒子轨迹的荧光成像的物理机制是基于创建的,这是通过电离颗粒F 2颜色中心在晶体晶格中的产生。这些中心用蓝光(在445 nm左右的波长)激发时,在红色光谱范围内发出光致发光(在670 nm处达到峰值)。使用荧光显微镜,使用高放大倍数和灵敏的数码相机,可以以低于1微米的分辨率对辐射轨道进行成像。轨道强度是从轨道发出的荧光灯的强度,取决于电离密度,即,即局部沉积的能量的量。lif晶体已成功地用于图像各种离子的轨道,从氦与铁不等(Bilski等,2019a)。对于质子,对于高能梁,像放射疗法中使用的光束一样,由于这些颗粒的电离密度较低,很难观察到原代质子的单个轨道。对质子辐照的LIF晶体的初步分析揭示了某些荧光轨道的存在,但仅以几乎没有分布的斑点的形式。 这些斑点的数量比撞击晶体上的质子数量低的数量级。 它们的荧光强度非常低 - 与伽马辐射产生的轨道的强度相似。 因此,很难确定观察到的轨道是由原代质子,能量降解的质子还是由某些二次颗粒产生的。 另一方面,众所周知,低能质子可能会产生完全不同的轨道,因为它发生在热中子辐照的LIF晶体中,其中由2.73 MeV 3 h核产生的轨道(中子的核反应与6 Li核的核反应的产物)可见(Bilski等人,2018年)。 因此,本工作的目的是更仔细地研究LIF FNTD在检测低能和高能量质子方面的能力。 该受试者不仅与放射疗法质子束的测量相关,而且与质子丰富的宇宙辐射的剂量计有关。对质子辐照的LIF晶体的初步分析揭示了某些荧光轨道的存在,但仅以几乎没有分布的斑点的形式。这些斑点的数量比撞击晶体上的质子数量低的数量级。它们的荧光强度非常低 - 与伽马辐射产生的轨道的强度相似。因此,很难确定观察到的轨道是由原代质子,能量降解的质子还是由某些二次颗粒产生的。另一方面,众所周知,低能质子可能会产生完全不同的轨道,因为它发生在热中子辐照的LIF晶体中,其中由2.73 MeV 3 h核产生的轨道(中子的核反应与6 Li核的核反应的产物)可见(Bilski等人,2018年)。因此,本工作的目的是更仔细地研究LIF FNTD在检测低能和高能量质子方面的能力。该受试者不仅与放射疗法质子束的测量相关,而且与质子丰富的宇宙辐射的剂量计有关。