摘要 本文介绍并分析了一种专用于 2.4 GHz 无线传感器网络 (WSN) 应用的多模式低噪声放大器 (LNA) 的设计。所提出的无电感器 LNA 采用 28 nm FDSOI CMOS 技术实现,基于共栅极配置,其中嵌入共源级以提高电路的整体跨导。该 LNA 经过专门设计和优化,可解决三种操作模式。重新配置是通过电流调谐以及切换放大晶体管的背栅极来完成的。所提出的实现方式可使品质因数 (FOM) 在不同操作模式下保持恒定。在低功耗模式下,LNA 仅消耗 350 uW。它实现了 16.8 dB 的电压增益 (G v ) 和 6.6 dB 的噪声系数 (NF)。在中等性能模式下,增益和噪声系数分别提高到 19.4 dB 和 5.4 dB,功耗为 0.9 mW。在高性能模式下,增益最大,为 22.9 dB,噪声系数最小,为 3.6 dB,功耗为 2 mW。输入参考三阶截点 (IIP3) 所表示的线性度恒定,接近 -16 dBm。报道的 LNA 仅占用 0.0015 mm 2 。
摘要 本文介绍了一种负载调制平衡放大器 (LMBA) 的设计方法,重点是减轻 AMPM 失真。通过引入二次谐波控制作为设计自由度,可以选择复杂的负载轨迹来补偿设备中的 AMPM 非线性,而不会显著影响效率。数学推导伴随着基于闭式方程的设计程序,以仅基于负载牵引数据来制造 LMBA。通过对三种不同设计进行测量比较来验证该理论,这些设计在伪 RF 输入 Doherty 类 LMBA 配置中以 2.4 GHz 运行,具有 J 类、-B 类和 -J* 类主 PA。J 类原型的性能优于其他设计,在峰值输出功率和 6 dB 回退时分别具有 54% 和 49% 的漏极效率,并且在此功率范围内只有 4 度的 AM-PM。当使用 10 MHz、8.6 dB PAPR LTE 信号驱动时,无需数字预失真,即可实现 40.5% 的平均效率和优于 − 40.5 dBc 的 ACLR。
(17)
编程的死亡配体1(PD-L1)是一种免疫检查点抑制剂,与T细胞和其他免疫细胞表达的受体PD-1结合以调节免疫反应。最终阻止了加剧的激活和自身免疫性。许多肿瘤通过过表达PD-L1来利用这种机制,PD-L1通常与预后不良相关。最近还显示了一些肿瘤表达PD-1。在肿瘤上,PD-L1与PD-1在免疫细胞上的结合可促进免疫逃避和肿瘤进展,主要是通过抑制细胞毒性T淋巴细胞效应子功能。PD-1/PD-L1靶向疗法已彻底改变了癌症治疗局势,并已成为某些癌症的第一线治疗,因为它们能够促进晚期癌症患者的耐用抗肿瘤免疫反应。尽管取得了临床成功,但一些患者已证明没有反应,过度发展或对PD-1/PD-L1靶向治疗产生抗药性。仍然不清楚的确切机制。本综述将讨论PD-1/PD-L1靶向治疗的当前状态,PD-L1的致癌表达,PD-L1及其受体PD-1的新和新兴的肿瘤内在作用以及它们如何对肿瘤进展和免疫疗法反应有助于不同的肿瘤学模型。
• QML P 类抗辐射性能保证 (QMLP-RHA) 等级 • 采用小型 SOT-23 封装 • 辐射性能: – 单粒子闩锁 (SEL) 免疫 65MeV-cm 2 /mg – 总电离剂量 (TID) 抗辐射性能保证 (RHA) 高达 100krad (Si) • 支持国防、航空航天和医疗应用 – 单一受控基线 – 一个制造、装配和测试站点 – 金线 – NiPdAu 引线表面涂层 – 可在军用 (-55°C 至 125°C) 温度范围内使用 – 延长产品生命周期 – 产品可追溯性 – 增强型塑封材料,降低排气量 • 低失调电压:±125µV • 低噪声:1kHz 时为 10.8nV/√Hz • 高共模抑制:130dB • 低偏置电流:±10pA • 轨到轨输入和输出 • 宽带宽:4.5MHz GBW • 高压摆率:21V/µs • 高电容负载驱动:1nF • 多路复用器友好型/比较器输入 • 低静态电流:每个放大器 560µA • 宽电源电压:±1.35V 至 ±20V,2.7V 至 40V • 强大的 EMIRR 性能:输入和电源引脚上的 EMI/RFI 滤波器
Supply Voltage, V+ to V– .................................................................... 7.5V Signal Input Terminals, Voltage (2) ..................... (V–) – 0.5V to (V+) + 0.5V Current (2) ..................................................... 10mA Output Short-Circuit (3) ..............................................................Continuous Operating Temperature .................................................. –55 ° C to +125 ° C Storage Temperature ...................................................... –65 ° C to +150 ° C Junction Temperature .................................................................... +150 ° C
摘要....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 2
.subckt MCP6001 in+ in- V+ V- out * 输入级 - RIN = 10T, CIN = 3p, Voffset = 4.5m R1 in+ in- 10T C1 in+ in- 3p Voffset in+ offset dc 4.5m * 增益级 - R2 = {AOL/(6.28*GBP*CPOLE)}, AOL = 400k, GBP = 1Meg, CPOLE = 1n * gm = 6.28*GBP*CPOLE, 电流限制 IMAX = +/- 0.6mA G1 0 int_gain 值={limit(0.00628*V(offset,in-),0.6m, -0.6m)} R2 int_gain 0 63.7Meg C2 int_gain 0 1n * 输出级 - 电流限制为 +/- 20mA, ROUT = 300 欧姆 G2 0 输出值 = {limit(V(int_gain, 0)/300, 20m, -20m)} R3 输出 0 300 * 输出电压限制为 V+ 和 V- D1 int_gain V+ Dlimit D2 V- int_gain Dlimit .model Dlimit D(Ron=0.0001 Roff=100G Vfwd=0) .ends MCP6001
图表 图 1 接收器架构 [7] .................................................................................................... 6 图 2 用于生成 S 参数的输入和输出端口。 [8] ........................................................... 6 图 3 体 CMOS 与 FD-SOI 结构 [9] .............................................................................. 8 图 4 共栅极放大器(左)共源放大器(右) ........................................................ 10 图 5 级联电感退化 CS LNA 原理图 ........................................................................11 图 6 测试台设置 ......................................................................................................................... 14 图 7 Cpad 的参数扫描 ............................................................................................................. 15 图 8 理想元件的 S11 行为 ............................................................................................................. 16 图 9 所需频带的 S21 行为宽度 ............................................................................................................. 17 图 10 S21 带宽 ............................................................................................................................. 18 图 11 理想元件的噪声系数 ............................................................................................................. 19 图 12 增益(单位为 dBm) ............................................................................................................. 20 图 13 非理想元件的 S11 行为 ............................................................................................................. 21 图 14 非理想元件的 S21 行为........................................................................... 22 图 15 S21 带宽 ...................................................................................................................... 23 图 16 非理想元件的噪声系数 ...................................................................................................... 24 图 17 功率增益 ...................................................................................................................... 25 图 18 完整布局 ...................................................................................................................... 26 图 19 电阻器 MOSFET 和电容器的放大布局。 ............................................................. 27
运算放大器广泛用于各种电子应用,包括音频放大器、信号调节器、滤波器、振荡器、稳压器等等。它们是模拟电子器件的基本组成部分,通常与其他元件配合使用,在电子电路中执行各种任务。运算放大器以集成电路 (IC) 形式提供,因此易于在各种应用中使用。运算放大器是线性集成电路 (IC)。线性集成电路是由许多晶体管、二极管、电阻器和电容器组成的设备,它们被制造在单个半导体材料微型芯片中,并封装在一个外壳中,以形成一个功能电路。