我们的团队定期生产用于临床研究的放射性示踪剂,并将其供应给魁北克省儿童医院(CHUM)以及魁北克省的其他医院。我们目前正在开发用于PET成像研究的Ga-68标记分子。此外,一台新的7T PET/MRI系统将集成到我们的平台中,这将增强临床前研究,并促进新型放射性示踪剂的临床转化。
99m TC,导致了放射性药物的放射性药物(RCY)和PCA恶性肿瘤中SPECT成像和放射性手术的稳定性。进行了各种临床前测定,以评估冷藏室获得的[99m TC] TC-PSMA-I&S。这些测定法包括对RCY,盐水的放射化学稳定性,亲脂性,血清蛋白结合(SPB),LNCAP-PCA细胞的AFINIS(结合和内在化研究)以及NAIVE和LNCAP-PCA-PCA-PCA-BEARINE小鼠中的生物生物分布。用良好的RCY(92.05%±2.20%)获得了放射线药物,并保持稳定6小时。确定亲脂性为-2.41±0.06,而SPB为〜97%。与LNCAP细胞的结合百分比为9.41%±0.57%(1 h)和10.45%±0.45%(4 H),其中有结合材料的结合百分比为63.12±0.93(1 H)和65.72%±1.28%(4 H)的结合材料。使用过量未标记的PSMA-I&S的阻止测定,导致结合百分比降低了2.6倍。在肿瘤中[99m TC] TC-PSMA-I&S的离体生物分布率高的高积累,肿瘤与互机的肌肉比率约为6.5。总而言之,[99m TC] TC-PSMA-I&S通过使用新鲜洗脱的[99m TC] NATCO 4进行了放射性标记,从而成功获得了良好的RCY和
蒙特利尔大学医院中心研究中心 (CRCHUM) 和蒙特利尔大学医学院放射学、放射肿瘤学和核医学系正在寻找放射化学领域的教授研究员职位,负责开发和验证医学成像(正电子发射断层扫描 - PET 和其他模式)中使用的放射性示踪剂。候选人将制定一项创新的研究计划,融入从事转化研究的各种多学科团队,促进基础研究成果向临床应用的转化,用于患者、健康个体或动物的诊断、监测和治疗。作为放射学、放射肿瘤学和核医学系的成员,研究人员将被要求在一个充满活力的团队内工作,在加拿大最大的研究中心之一 CRCHUM 和蒙特利尔大学网络内工作 CRCHUM 是少数包含专门用于成像和工程的研究轴的研究中心之一。
简介正电子发射断层扫描 (PET) 应用的放射化学是不同专业领域的复杂融合。该领域融合了基础有机化学和分析科学,所有这些都受到及时生产短寿命同位素 ( 11 C、 18 F 和 68 Ga) 的约束,以满足具有足够活度和纯度的医疗需求。总的来说,这些限制使得除了少数小分子之外的所有小分子都无法在动物身上进行研究和/或商业化。虽然本期其他地方将讨论用于进一步研究的新型分子的生成,但放射化学家在放射性示踪剂流程 (方案 1) 中的作用是确定分子中哪个位点最适合标记,确定在该位点标记的理想策略,优化化学反应以有效生产放射性标记产品化合物,最后开发适当的分析技术来验证标记分子的身份和纯度。到目前为止,实现这些目标的主要方法是通过大量的反复试验,耗费大量的时间(包括人力和仪器)和资源。随着人工智能和机器学习中使用的许多工具可供研究人员使用,利用这些工具解决 PET 应用的放射性标记分子生产过程中遇到的问题的潜力越来越大。1 人工智能虽然是一个常用的“流行词”,旨在唤起超人理解系统的能力,但它只是机器表现出的“智能”,通过应用数学和计算机科学算法来评估数据(“机器学习”)和执行决策,模仿动物或人类的“自然智能”。它们并不能取代人类在科学过程中的作用;相反,它们可以被视为方便的“专家”和工具,以补充和增强该领域的化学家。从这个角度来看,我们概述了人工智能在放射化学领域的一些潜在应用。
一个世纪前放射性的发现开辟了科学领域的新领域,即原子核。40 年后,人们发现了核裂变,并发现了核武器和核反应堆的实际影响。这仍然是新闻媒体关注的焦点,因为它影响着国际政治和国家能源政策。然而,核科学对我们的日常生活贡献更大,因为它已经渗透到几乎每一个重要领域,有时以开创性的方式,有时为旧问题提供全新的解决方案:从宇宙历史和我们的文明到食品生产方法,再到我们从年轻到老年的健康。这是一个不断发展的迷人领域。核化学是其中的一个重要部分。本书的主题源于化学和核科学。由于每种化学元素都可以具有放射性,并通过这种特性进行化学反应,因此放射化学对大多数化学领域都有贡献。根据恩斯特·卢瑟福的定义,核化学包括通过核反应引起的所有元素组成变化。我们只是根据这本书的内容来定义放射化学和核化学,这本书主要是为化学家编写的。内容包括基础章节,然后是应用章节。每章以练习(附答案)和文献参考结束