癌蛋白 - 靶向宠物示踪剂,并评估其转化能力用于非小细胞肺癌(NSCLC)和结直肠癌(CRC)患者的KRAS G12C突变非侵入性成像。方法:[18 f] PfPMD是根据AMG510(Sotorasib)合成的,通过将聚乙二醇链连接到喹唑啉酮结构中。通过细胞摄取,内在化和阻断(H358:KRAS G12C突变; A549:非KRAS G12C突变)研究,通过细胞摄取,内在化和阻断来检验[18 F] PFPMD的结合选择性和成像潜力。招募了五名健康志愿者,以评估[18 F] PFPMD的安全性,生物分布和剂量测定法。随后,有或没有KRAS G12C突变的14例NSCLC或CRC患者进行了[18 F] PFPMD和[18 F] FDG PET/CT成像。测量了[18 f] pfpmd的肿瘤摄取的SUV最大,并在有KRAS G12C突变的患者中进行了比较。结果:[18 F] PFPMD以较高的放射化学产率,放射化学纯度和稳定性获得。蛋白质结合测定法显示[18 F] PFPMD选择性地结合了KRAS G12C蛋白。[18 F] PFPMD在H358中的摄取量明显高于A549,并且通过AMG510进行预处理(H358 vs. A549:3.22%6 0.28%vs. 2.50%vs. 2.50%6 0.25%6 0.25%,p,0.05; block:2.06%6 0.13%,0.13%,p,p,0.22%,pfpmd。在PET成像的承重小鼠中观察到了相似的结果(H358 vs. A549:3.93%6 0.24%vs. 2.47%6 0.26%注射剂量/G,P,0.01; Block:2.89%6 0.29%0.29%注射剂量/G; P,0.05)。全身有效剂量与[18 F] FDG的剂量相当。[18 f] pFPMD在人类中是安全的,主要由胆囊和肠道排出。[18 F] PFPMD在KRAS G12C突变肿瘤中的积累显着高于非KRAS G12C突变肿瘤(SUV最大:3.73 6 0.58 vs. 2.39 6 0.22,P,0.01)在NSCLC和CRC患者中。结论:[18 F] PFPMD是NSCLC和CRC患者中KRAS G12C突变状态无创筛查的安全且有前途的宠物示踪剂。
使用特定的抗体阻止免疫检查点分子促进的细胞死亡蛋白1及其配体PD-L1的相互作用一直是免疫肿瘤学的主要突破。全身PD-L1表达宠物成像可能可以更好地预测对程序性细胞死亡蛋白1-靶向疗法的反应。对PD-L1表达的成像是用adnectin蛋白18 F-BMS-986192的PET可行的。然而,诸如BMS-986192等蛋白质的无线电流效仍然复杂,标记产率较低。因此,这项研究的目的是对68个标记的adnectin蛋白(68 GA-BMS-986192)的开发和临床前评估,以促进临床试验。方法:在pH 5.5(50 c,15分钟)中,在Naoac-Buffer中进行了Dota-Conjugated adnectin(BXA-206362)的68 GA标记。使用稀薄的层色谱和射射色液相色谱法分析了37 C时人血清中的体外稳定性。PD-L1结合测定法使用转导的PD-L1 - 表达淋巴瘤细胞系U-698-M和野生型U-698-M细胞作为阴性对照。使用PD-L1 - 正阳性和PD-L1 - 阴性U-698-m - 轴承NSG小鼠进行了PD-L1 - 阳性和PD-L1 - 负L1 - 阳性和PD-L1 - 阴性-L1 - 阴性-L1 - 负L1 - 阳性和PD-L1 - 阴性-L1 - 阳性和PD-L1 - 负L1 - 阴性-L1 - 阳性 - L1 - 阳性 - 986192。结果:68 GA-BMS-986192的定量放射化学产率超过97%并且具有较高的放射化学纯度。PD-L1 - 阴性肿瘤仅显示背景放射性摄取(0.6 6 0.1%ID/g)。对未标记的腺素过量的过量共同注射会使PD-L1的肿瘤摄取摄入超过80%。在人类血清中的体外稳定性95%后4Hofcubation.highandspecifinfienting对人PD-L1的68 Ga-bms-986192 - 表达癌细胞的结构与各自的PD-L1 Expres-Expres-exion水平密切相关。体内,68 GA-BMS-986192在PD-L1损伤后1小时吸收率很高 - 阳性肿瘤(9.0 6 2.1 2.1个百分比注射剂量[%id]/g)和肾脏(56.9 6 6 9.2%ID/g),在其他组织中可忽视的UPTAKE。结论:68 GA-BMS-986192启用了轻松的放射合成和归档scellentinvitroandinvivopd-l1 - 靶向性呈现。Hightumorutake与低background的早期成像时间点相结合,证明了68 GA-BMS-
实验室服务 实验室从事的活动旨在帮助诊断、治疗和预防传染性、慢性、先天性和遗传性疾病;评估人口的总体健康状况;帮助维护健康的环境;并确保卫生和环境实验室社区的高质量工作。实验室在新生儿筛查、食物中毒、细菌学、病毒学、血清学、寄生虫学、放射化学、农药残留分析和许多其他学科领域的病原体监测研究方面提供诊断和后续服务。州公共卫生实验室还提供培训和咨询活动。作为该州的参考临床实验室,PHL 为当地卫生部门、医院、诊所和商业实验室提供广泛的服务,包括未知病原体的鉴定和确认、实验室方法咨询以及当前实验室问题和技术培训。作为向地方、州和联邦机构提供服务的机构,PHL 通常是协调传染病爆发调查和调解机构间信息传递的焦点。PHL 的工作人员测试与已知和潜在疾病爆发相关的临床和环境标本/样本,并与流行病学、护理和环境卫生工作人员合作
高能密度科学:在极端温度和压力条件下研究和控制物质方面发挥国际领导作用。高性能计算、模拟和数据科学:在开发、集成和使用新的计算机架构、预测模拟功能、知识提取工具和分析技术方面发挥领导作用。核、化学和同位素科学与技术:推进核和粒子物理、放射化学、分析化学和同位素特征的基本理解、科学能力和技术,以支持 LLNL 多方面的国家安全使命。先进材料与制造:满足 NNSA 和国家对先进材料和制造工艺及系统的快速、经济高效的开发需求。激光和光学科学与技术:设计、建造和可靠地操作复杂的激光系统,大大推进最先进的技术,以满足具有战略意义的应用。生物科学与生物工程:在生物学、工程学和物理科学的交叉领域开展工作,以应对生物安全、化学安全、生物能源和人类健康方面的国家挑战。地球与大气科学:推进地球与大气科学的前沿发展,以开发推动劳伦斯利弗莫尔国家实验室能源和国家安全任务的创新能力。
背景:如今,放射性标记的单克隆抗体 (mAb) 已广泛应用于各种癌症的诊断和治疗。本研究根据荷瘤小鼠的生物分布数据估算了 177 Lu-西妥昔单抗-PAMAM 的人体吸收剂量。材料和方法:将西妥昔单抗与 PAMAM 纳米粒子结合,将 DTPA-CHX 与 mAb-PAMAM 结合,制备 177 Lu-DTPA-CHX-西妥昔单抗-PAMAM。研究了注射后 72 小时内标记纳米系统在荷瘤裸鼠中的生物分布。根据动物数据,利用辐射吸收剂量评估资源 (RADAR) 和相对质量外推法计算人体器官的吸收剂量。结果:在优化条件下制备的放射性标记化合物的放射化学纯度 (RCP) 为 99.6% ± 0.4% (P < 0.05)。大部分活性集中在肿瘤部位 (10.14 ± 0.89; P < 0.05)。肝脏和肾脏的吸收剂量最高,分别为 0.561 和 0.207 mSv/ MBq,低于其他 177 Lu 标记的单克隆抗体。结论:考虑到 177 Lu-DTPA-CHX-西妥昔单抗 -PAMAM 的特殊性质,该放射性标记纳米系统可被视为一种安全有效的放射性标记化合物,用于治疗 EGFR 表达肿瘤。
同位素研发和生产概述DOE同位素计划(DOE IP)的任务是:在美国短暂供应或无法提供的产品和/或分发稳定的同位素和放射性异位素,包括相关的同位素服务; 维持制造同位素所需的关键国家基础设施和核心能力的任务准备,并确保国家在国家危机期间应对供应链缺口的准备; 进行研发以开发变革性的同位素生产,分离和丰富技术,以使联邦,学术和工业创新,研究和新兴技术能够; 培养具有独特和世界领先的核心能力的多样化和包容的家庭劳动力; 减轻美国对同位素供应的依赖,并促进国内供应链为美国的经济弹性链。DOE IP可为国家提供高优先放射性和稳定的同位素,因为该国没有任何国内实体能够满足市场需求。该程序通常是这些稀有同位素的唯一或少数全球生产商之一。但是,美国仍然高度依赖来自敏感国家的同位素供应链。同位素是高优先事项,可以使国家对国家具有战略重要性,并且在医学诊断和治疗,发现科学,国家安全,高级制造,半导体制造,太空探索,通信,生物学,量子信息科学,清洁能源和其他领域至关重要。DOE IP是SC中唯一的DOE“任务基本功能”,并在国家紧急情况下继续操作,以减轻同位素供应链的干扰。DOE IP与行业紧密合作,以确保为商业稳定和增长提供所需的同位素,并促进对国内私营部门的同位素生产商业化。doe ip介入在19日期大流行期间和俄罗斯入侵乌克兰,以减轻对联邦机构,工业和研究至关重要的供应链中断。DOE IP利用国家实验室和大学的粒子加速器和研究核反应堆来照射目标,然后在放射化学基础设施中处理这些靶标,以提取感兴趣的放射性病。 DOE IP还从传统浪费或库存中提取放射性同位素,以减少废物处置,同时提供有价值的产品。doe ip管理着国家的同位素库存,例如氦3(HE-3),这对于低温,量子信息科学(QIS),融合能源和国家安全至关重要;俄罗斯是HE-3的另一个主要生产商。DOE IP负责由曼哈顿项目的一部分开发的碳纤维(电磁离子分离)创建的所有稳定同位素的国家存储库。浮雕在1998年停止了运营,使美国没有广泛的同位素富集能力。俄罗斯拥有全球最大的同位素富集能力,中国最近开始运营具有重要功能的新设施。美国稳定同位素的库存有限,导致美国依靠外国进行关键的稳定同位素。DOE IP支持创新同位素生产,富集和化学分离的世界领先的研发计划。DOE IP正在开发现代稳定的同位素丰富能力,以重建国内制造能力,补充库存并促进美国的经济韧性,繁荣和竞争力。同位素制造和研发活动为培训和劳动力发展提供了附带福利,并促进了与清洁能源,加速器科学,核工程,核物理,同位素富集和放射化学相关的未来美国专业知识。这些学科是基本的,不仅是同位素的生产和加工,还基于基本和应用核和放射化学科学的许多基本方面。研究和生产活动在人工智能(AI),机器学习(ML),机器人技术和高级制造中开发并采用技术和平台技术。此要求中的资金支持基础设施,员工和设施的任务准备;研究;以及满足美国同位素需求不断增长的新功能。从销售工资中收集的同位素,分销和相关服务的实际生产。同位素出售给商业客户,外国实体的价格为全成本恢复或市场价格(以较高者为准)。与国内研究的同位素定价降低,以促进创新和科学进步。DOE IP资金是通过同位素生产和分销计划循环基金执行的,在该基金中,分配资金和客户收入均已存入和执行以实现计划可行性。
同位素研发和生产概述DOE同位素计划(DOE IP)的任务是:在美国短暂供应或无法提供的产品和/或分发稳定的同位素和放射性异位素,包括相关的同位素服务; 维持制造同位素所需的关键国家基础设施和核心能力的任务准备,并确保国家在国家危机期间应对供应链缺口的准备; 进行研发以开发变革性的同位素生产,分离和丰富技术,以使联邦,学术和工业创新,研究和新兴技术能够; 培养具有独特和世界领先的核心能力的多样化和包容的家庭劳动力; 减轻美国对同位素供应的依赖,并促进国内供应链为美国的经济弹性链。DOE IP可为国家提供高优先放射性和稳定的同位素,因为该国没有任何国内实体能够满足市场需求。该程序通常是这些稀有同位素的唯一或少数全球生产商之一。但是,美国仍然高度依赖来自敏感国家的同位素供应链。同位素是高优先事项,可以使国家对国家具有战略重要性,并且在医学诊断和治疗,发现科学,国家安全,高级制造,半导体制造,太空探索,通信,生物学,量子信息科学,清洁能源和其他领域至关重要。DOE IP是SC中唯一的DOE“任务基本功能”,并在国家紧急情况下继续操作,以减轻同位素供应链的干扰。DOE IP与行业紧密合作,以确保为商业稳定和增长提供所需的同位素,并促进对国内私营部门的同位素生产商业化。doe ip介入在19日期大流行期间和俄罗斯入侵乌克兰,以减轻对联邦机构,工业和研究至关重要的供应链中断。DOE IP利用国家实验室和大学的粒子加速器和研究核反应堆来照射目标,然后在放射化学基础设施中处理这些靶标,以提取感兴趣的放射性病。 DOE IP还从传统浪费或库存中提取放射性同位素,以减少废物处置,同时提供有价值的产品。doe ip管理着国家的同位素库存,例如氦3(HE-3),这对于低温,量子信息科学(QIS),融合能源和国家安全至关重要;俄罗斯是HE-3的另一个主要生产商。DOE IP负责由曼哈顿项目的一部分开发的碳纤维(电磁离子分离)创建的所有稳定同位素的国家存储库。浮雕在1998年停止了运营,使美国没有广泛的同位素富集能力。俄罗斯拥有全球最大的同位素富集能力,中国最近开始运营具有重要功能的新设施。美国稳定同位素的库存有限,导致美国依靠外国进行关键的稳定同位素。DOE IP支持创新同位素生产,富集和化学分离的世界领先的研发计划。DOE IP正在开发现代稳定的同位素丰富能力,以重建国内制造能力,补充库存并促进美国的经济韧性,繁荣和竞争力。同位素制造和研发活动为培训和劳动力发展提供了附带福利,并促进了与清洁能源,加速器科学,核工程,核物理,同位素富集和放射化学相关的未来美国专业知识。这些学科是基本的,不仅是同位素的生产和加工,还基于基本和应用核和放射化学科学的许多基本方面。研究和生产活动在人工智能(AI),机器学习(ML),机器人技术和高级制造中开发并采用技术和平台技术。此要求中的资金支持基础设施,员工和设施的任务准备;研究;以及满足美国同位素需求不断增长的新功能。从销售工资中收集的同位素,分销和相关服务的实际生产。同位素出售给商业客户,外国实体的价格为全成本恢复或市场价格(以较高者为准)。与国内研究的同位素定价降低,以促进创新和科学进步。DOE IP资金是通过同位素生产和分销计划循环基金执行的,在该基金中,分配资金和客户收入均已存入和执行以实现计划可行性。
国际原子能机构放射性同位素生产和辐射技术计划的主要目标之一是提高国际原子能机构成员国在部署用于医疗和工业应用的新兴放射性同位素产品和发生器方面的专业知识和能力,以满足国家需求,并吸收用于诊断和治疗应用的放射性药物的新发展。这将确保在质量保证框架内这些应用在当地可用。国际原子能机构放射性同位素和放射性药物系列出版物提供以下领域的信息:反应堆和加速器生产的放射性同位素、发生器和密封源的开发/生产,用于医疗和工业用途;放射性药物科学,包括放射化学、放射性示踪剂开发、生产方法和质量保证/质量控制 (QA/QC)。这些出版物拥有广泛的读者群,旨在满足科学家、工程师、研究人员、教师和学生、实验室专业人员和教员的需求。国际专家协助国际原子能机构秘书处起草和审查这些出版物。本系列中的一些出版物也可能得到相关领域国际组织和专业协会的认可或共同赞助。出版物分为两类:国际原子能机构放射性同位素和放射性药物系列和国际原子能机构放射性同位素和放射性药物报告。
卓越的科学技术实验室的使命需要多个科学和工程学科的杰出能力,包括:高能密度科学:在极端温度和压力条件下研究和控制物质方面发挥国际领导作用。高性能计算、模拟和数据科学:在新型计算机架构、预测模拟功能、知识提取工具和分析技术的开发、集成和使用方面发挥领导作用。核、化学和同位素科学与技术:推进核物理、粒子物理、放射化学、分析化学和同位素特征方面的基本理解、科学能力和技术,以支持 LLNL 多方面的国家安全使命。先进材料与制造:满足 NNSA 和国家对先进材料和制造工艺及系统的响应性、成本效益开发的需求。激光与光学科学与技术:设计、建造和可靠地操作复杂的激光系统,大大推进最先进的技术,以满足具有战略意义的应用。生物科学与生物工程:在生物学、工程学和物理科学的交叉领域开展工作,以应对生物安全、化学安全、生物能源和人类健康方面的国家挑战。地球与大气科学:推进地球和大气科学的前沿,以开发创新能力,推动 LLNL 的能源和国家安全任务。
国际原子能机构放射性同位素生产和辐射技术计划的主要目标之一是提高国际原子能机构成员国在部署用于医疗和工业应用的新兴放射性同位素产品和发生器方面的专业知识和能力,以满足国家需求,并吸收用于诊断和治疗应用的放射性药物的新发展。这将确保在质量保证框架内这些应用在当地可用。国际原子能机构放射性同位素和放射性药物系列出版物提供以下领域的信息:反应堆和加速器生产的放射性同位素、发生器和密封源的开发/生产,用于医疗和工业用途;放射性药物科学,包括放射化学、放射性示踪剂开发、生产方法和质量保证/质量控制 (QA/QC)。这些出版物拥有广泛的读者群,旨在满足科学家、工程师、研究人员、教师和学生、实验室专业人员和教员的需求。国际专家协助国际原子能机构秘书处起草和审查这些出版物。本系列中的一些出版物也可能得到相关领域国际组织和专业协会的认可或共同赞助。出版物分为两类:国际原子能机构放射性同位素和放射性药物系列和国际原子能机构放射性同位素和放射性药物报告。