化学系 - 慕尼黑大学技术大学。4,85748 GARCHING b。德国美钦。 电话:+49(89)289-13831;电子邮件:angela.casini@tum.de,orcid ID:http://orcid.org/0000-0000-0003-1599-9542; URL:https://wwwt3.ch.tum.de/en/faculty/staff/astive-members/c/prof-dr-dr-dr-dr-dr-dr-dr-dr-dr-angela-casini/出生日期:25 - 1973年3月25日至1973年,国籍,国籍:意大利教育摘要和职业安吉拉·卡西尼(Angela Casini自2019年以来。 自2021年以来,她担任药品放射化学临时主席,并且是慕尼黑数据科学研究所(MDSI)的核心成员。 她于2004年在佛罗伦萨大学(意大利)完成了化学博士学位,并作为由瑞士国家科学基金会(Ambizione计划)资助的首席调查员它所搬到了EPFL(瑞士)。 在2011年至2015年之间,她曾担任格罗宁根大学(荷兰)的助理教授,拥有罗莎琳德·富兰克林(Rosalind Franklin)奖学金。 在2015年至2019年之间,她还担任研究生(英国)化学学院的硕士学位主席兼董事,然后才担任目前在TUM的职位。 她的研究兴趣是药用无机和生物无机化学。 具体而言,对金属离子在生物系统中的作用以及有机金属抗癌剂的作用机理的研究是她小组中的积极研究主题。 此外,在化学生物学,药物递送和医学的各个领域还探索了金属化合物和超分子配位络合物的新型应用。4,85748 GARCHING b。德国美钦。电话:+49(89)289-13831;电子邮件:angela.casini@tum.de,orcid ID:http://orcid.org/0000-0000-0003-1599-9542; URL:https://wwwt3.ch.tum.de/en/faculty/staff/astive-members/c/prof-dr-dr-dr-dr-dr-dr-dr-dr-dr-angela-casini/出生日期:25 - 1973年3月25日至1973年,国籍,国籍:意大利教育摘要和职业安吉拉·卡西尼(Angela Casini自2019年以来。自2021年以来,她担任药品放射化学临时主席,并且是慕尼黑数据科学研究所(MDSI)的核心成员。她于2004年在佛罗伦萨大学(意大利)完成了化学博士学位,并作为由瑞士国家科学基金会(Ambizione计划)资助的首席调查员它所搬到了EPFL(瑞士)。在2011年至2015年之间,她曾担任格罗宁根大学(荷兰)的助理教授,拥有罗莎琳德·富兰克林(Rosalind Franklin)奖学金。在2015年至2019年之间,她还担任研究生(英国)化学学院的硕士学位主席兼董事,然后才担任目前在TUM的职位。她的研究兴趣是药用无机和生物无机化学。具体而言,对金属离子在生物系统中的作用以及有机金属抗癌剂的作用机理的研究是她小组中的积极研究主题。此外,在化学生物学,药物递送和医学的各个领域还探索了金属化合物和超分子配位络合物的新型应用。在这些领域中,她撰写了270多个出版物(包括12本书章节),H索引为72。自2021年以来,在寻找新型超分子无机材料时,她协调了4年的TUM创新网络(大约400万欧元投资)“人工智能供电的多功能材料设计”(Artemis)。该网络专注于使用机器学习开发新的材料进行能源研究和再生医学。
环境。直接研究授权的行使包括构建已开展的工作并提出一个可能阐明尚未解答的问题的研究项目。就活动的主题而言,很明显,金属及其在环境分区之间的转移(或动态)问题是我工作的核心。在使用同位素地球化学(与其他技术相结合)16年后,我仍然相信这种方法提供了通过其他方式难以获得的有价值的信息。要确信这一点,只需看看越来越多的介绍同位素测量(尤其是铅的同位素测量)的出版物就足够了;分析技术的出现促进了爆炸,这些技术比古老的 TIMS 更便宜、更快……而论文年份致力于研究沉积信息、地表水和大气颗粒,以了解这些区室之间的传输在埃罗省 (Etang de Thau),论文后期的时间主要致力于土壤、泥炭地和地衣等生物蓄积物的研究,松针或鱼,涉足与考古学直接相关的领域。然而,正是由于方法的多学科性和多样性,这些困难才得以克服,特别是当涉及到相互作用极其复杂、几乎无限的自然环境时。但这个问题最终真的那么重要吗?这需要土壤学、成岩作用、考古学、沉积学、古植物学、形态古生物学、生物学、生态毒理学、兽医学、海洋学、地貌学、化学、放射化学、磁学、数学建模等各个领域的先进知识......不用说,如果我有一些基础知识可以让我或多或少有效地与作为这些学科的专家,我还远未掌握所有的微妙之处和具体知识。在本文档的其余部分中,读者通常很难确定我自己的贡献,因为所提出的研究中不同参与者之间的相互作用非常接近。
摘要:大量研究表明,体内超高剂量率“闪光”照射的正常组织的影响,并在体外报告了损害负担的减轻。朝向这一点,已经提出了两种关键的放射化学机制:自由基 - 激进重组(RRR)和瞬时氧耗竭(TOD),两者均提出导致诱导损伤水平降低。以前,我们报道了闪光灯在全血外周血淋巴细胞(WB-PBL)离体中引起较低水平的DNA链破裂损伤,但是我们的研究未能区分所涉及的机制。RRR的潜在结果是交联损伤的形成(特别是,如果有机自由基重新组合),而TOD的可能结果是闪光引起的诱导损害的更加无毒的预测。因此,当前研究的目的是通过彗星测定法对闪光灯诱导的损害进行损害,评估任何DNA交叉链接形成,作为RRR和/或缺氧DNA损伤形成的推定标志,作为TOD的指示标记,以确定对“闪光效应”有助于哪种机制的程度。闪光照射后,我们看不到任何交联形成的证据。但是,闪光照射会引起诱发损伤的更加缺氧,从而支持TOD机制。此外,用BSO预先进行的WB-PBL处理可消除闪光暴露介导的减少的链断裂伤害负担。总而言之,我们没有看到任何实验证据来支持RRR机制,导致闪光灯造成的损害负担减少。然而,观察闪光照射后更大的损害的缺氧证明,加上闪光介导的减少的链断裂伤害负担的BSO废除,为TOD提供了进一步的支持,使TOD成为减少伤害负担的驱动力,以及造成损坏的变化,造成了闪光的损害。
同位素和核技术在我们日常生活的许多方面发挥着重要作用,是我们社会经济发展不可或缺的一部分。无论是在医疗诊断和治疗、食品安全、工业过程控制还是机场行李检查中,这些技术都满足了人类的基本需求,增强了工业竞争力,或增进了我们对自然及其过程的理解。然而,部分由于核电领域的事故,一部分公众认为任何核技术都是天生不安全的,忽视了大量有利于健康、福利和环境的核应用。这些情绪大多是由缺乏信息和误解造成的。只有通过展示核应用提供的众多机会和优势才能纠正这种情况。编写这样一本书的想法源于这样一个事实:在过去十年中,人们对自然科学的兴趣普遍下降,同时,即使在最工业化的国家,也明显缺乏对核化学和放射化学感兴趣的学生。如何吸引学生的问题与如何让社会上其他感兴趣的群体意识到核分析技术 (NAT) 的有益应用的问题息息相关。显然,有吸引力且易于理解的公共信息材料非常缺乏。该主题在专业期刊上得到了充分介绍,在科学会议上也得到了很好的展示,但很少有印刷材料可供公众解释核技术在许多类型的问题上的有益应用。呼吁参与这些技术的研究人员提交简短而说明性的投稿,在六个月内收到了近五十份投稿,这表明核分析至关重要,并在当前分析技术的武器库中发挥着重要作用。这些对 NAT 有用应用的描述被选中,因为它们具有普遍意义,与其他领域的专家相关,甚至是为了激励核分析界超越其工作的常规范围并扩大其努力范围。这本书应该能够吸引对自然科学感兴趣的年轻人的注意力,教师也可以使用它来向年轻一代传播核知识。希望其他核领域能有更多此类汇编,以提高公众对核技术诸多有益贡献的认识。
本报告旨在向国会提供有关美国能源部 (DOE) 对马绍尔群岛共和国鲁尼特岛仙人掌陨石坑遏制结构进行的目视调查和地下水放射化学分析的活动和结果的信息,并确定这些调查和分析是否表明仙人掌陨石坑遏制结构内的污染物对埃尼威托克人民的健康风险发生了重大变化,如 2011 年岛屿地区法案第 112-149 号公法第 2 节所规定的那样。美国能源部于 2013 年和 2018 年对鲁尼特岛仙人掌陨石坑遏制结构完成了两次目视研究。这些研究评估了保护下方封装的受污染土壤和放射性碎片免受侵蚀的各个混凝土面板盖段的状况。虽然研究显示一些混凝土板存在可见缺陷,主要包括裂缝和混凝土板接缝和角落剥落,但能源部确定这些缺陷不是结构性的,也不太可能造成与放射性污染扩散到环境中相关的任何其他危害。此外,无损和核心样本测试结果表明,外部混凝土盖没有受损,并发挥了其预期作用,即提供有效的屏障以减少底层废料堆材料的自然侵蚀。鲁尼特岛地下水监测计划表明,在现有条件下,似乎没有明确证据表明仙人掌陨石坑放射性物质的扩散对近海泻湖或周围海域的辐射环境产生可测量的影响。泻湖水中观察到的 239+240 Pu 污染水平升高似乎主要是由泻湖沉积物中的钚引起的,而不是由仙人掌陨石坑污染物流入泻湖引起的。根据视觉研究和从 Runit 地下水监测计划观察到的数据,能源部确定,仙人掌陨石坑围堵结构内的污染物对埃尼威托克人民的健康风险没有显著变化。2022 年,能源部与美国陆军工程兵团 (USACE) 展开合作,协助设计和安装额外的地下水监测资源,以改善未来数据,并更详细地描绘仙人掌陨石坑围堵结构内部及周围的地下水流动和特征。
Garth Terry,医学博士,博士,是VA Northwest Network Network Network疾病研究,教育和临床中心(MIRECC)的临床研究精神病医生和VA职业发展奖(CDA)2的获得者,西雅图VA Puget Sound的临床疾病研究,教育和助理教授,以及精神病学系的助理教授,是精神病学和行为科学和医学学院的医学学院(华盛顿大学)(华盛顿大学)。他在宾夕法尼亚州哈弗福德学院(Haverford,Haverford)完成了本科学习,并获得了化学和音乐专业的专业,并在默克公司(Merck&Co。)被聘为一名放光化学家,在那里他负责临时生产小说和建立的Potitron发射术(PET)Radioligands的Radioligands。他在乔治华盛顿大学医学与健康科学学院完成了医学学位,并在美国国立心理健康研究所(NIMH)的研究生合作计划中获得了博士学位,并与临床神经科学系Karolinska Institute(KI)一起。在罗伯特·因尼斯(Robert Innis,PhD),博士学位(NIMH)和克里斯特·哈尔丁(Christer Halldin)博士学位(KI)的同事下,他在CNS Pet Radioligand开发和实施领域的世界专家认可了世界专家,他的论文着重于第一个高度选择性,具有高度特定的radioligands of Cannabinioid CB 1的翻译发展和验证。通过这种经验的结合,特里博士的专业知识几乎涵盖了PET CNS研究的各个方面,包括放射化学,啮齿动物和非人类灵长类动物的PET成像,人类的第一研究,使用PET的人类研究以及PET研究的药代动力学建模。在加州大学洛杉矶分校的居住培训期间,特里博士通过美国国家药物滥用研究所(NIDA)临床试验网络(CTN)为多个临床试验提供了科学和医学支持。他继续在VA Puget Sound的MireCC奖学金继续他的临床研究培训,并在联合基地Lewis McChord的VA Puget Sound和Madigan Medical Center的人类研究中支持人类研究。这些研究主要涉及在退伍军人和现役军人中使用肾上腺素后应激障碍(PTSD)和合并症。Terry博士目前是其CDA 2资助的翻译研究的主要研究者,探讨了基于分子的生物标志物在爆炸轻度创伤性脑损伤(MTBI)后,基于分子的生物标志物对退伍军人的神经炎症进行成像。他还担任了450万美元的国会定向医学研究计划(CDMRP)项目的共同投资者,其目的是开发一种新颖的PET放射线,用于成像人脑中的Alpha-1a肾上腺素受体。
整合素 avb 6 是一种上皮特异性细胞表面受体,在许多恶性肿瘤中过度表达,包括致死率极高的胰腺导管腺癌。在此,我们开发并测试了一种新型 avb 6 靶向肽 DOTA-5G ( 1 ),用 68 Ga 放射性标记,用于 PET/CT 成像,用 177 Lu 放射性标记用于治疗。为了开发一种放射治疗诊断剂,我们对其进行了进一步修改,以增加循环时间、肾脏循环和肿瘤摄取,得到 DOTA-白蛋白结合部分-5G ( 2 )。方法:在固相上合成肽 1 和 2,并通过酶联免疫吸附测定评估它们对 avb 6 的亲和力。这些肽用 68 Ga 和 177 Lu 放射性标记。在 avb 6 阳性 BxPC-3 人胰腺癌细胞中评估了 68 Ga- 1 和 177 Lu- 2 的体外细胞结合、内化和效应。对患有皮下 BxPC-3 肿瘤的雌性 nu/nu 小鼠进行了 68 Ga- 1 和 68 Ga- 2 的 PET/CT 成像。对 68 Ga- 1(注射后 1 和 2 小时)、68 Ga- 2(注射后 2 和 4 小时)以及 177 Lu- 1 和 177 Lu- 2(注射后 1、24、48 和 72 小时)进行了生物分布。使用 OLINDA/EXM 1.1 将 177 Lu- 2 生物分布数据外推用于人体剂量数据估计。在患有 BxPC-3 肿瘤的小鼠中评估了 177 Lu- 2 的治疗效果。结果:酶联免疫吸附试验显示肽 1 和 2 对 avb 6 具有高亲和力(,55 nM)。合成了高放射化学纯度的 68 Ga- 1、68 Ga- 2、177 Lu- 1 和 177 Lu- 2。在 BxPC-3 细胞中观察到 68 Ga- 1 和 177 Lu- 2 的快速体外结合和内化。PET/CT 成像和生物分布研究表明 BxPC-3 肿瘤中有摄取。177 Lu- 2 中引入白蛋白结合部分导致肿瘤摄取和保留随时间增加 5 倍。根据扩展剂量数据,177 Lu- 2 的剂量限制器官是肾脏。与对照组相比,177 Lu- 2 治疗使中位生存期延长了 1.5 至 2 倍。结论:68 Ga- 1 和 177 Lu- 2 在体内和体外均表现出对整合素 avb 6 的高亲和力,可迅速内化到 BxPC-3 细胞中,并且在小鼠和人血清中稳定。两种放射性示踪剂在临床前研究中均表现出良好的药代动力学,主要通过肾脏排泄,且肿瘤与正常组织的比例良好。良好的人体剂量数据表明 177 Lu- 2 具有治疗胰腺导管腺癌的潜力。
这是美国能源部(美国)向国会报告,关于气候变化对马歇尔群岛共和国(RMI)(RMI)的影响,如第117-81条第3140条,《国防部国防授权法》第2022财政年度。位于符文岛的Enewetak环礁的符文圆顶圆顶圆顶餐厅包含放射性污染的土壤和碎屑,这些土壤和碎屑被放置在1970年代美国在清洁行动中的无核核武器测试火山口内,并被非载荷的轴承轴承覆盖。由于放射性污染的剩余地下水平,RMI政府将Runit Island无限期地定位为禁止的位置。访问或访问仅限于官方活动。这项研究由DOE太平洋西北国家实验室(PNNL)独立进行,评估了气候变化如何影响从Enewetak泻湖,岛屿地表,岛屿地表和选拔赛圆顶部位的潜在释放或重新分布放射性核素的潜在释放或重新分布(包括居民的假设失败)以及EneweTects的环境和EneweteTakeLtect和EneweteTak的环境。该研究未评估任何其他毒素的影响,也没有确定符文穹顶假设失败的原因。放射性核素数据来自过去的研究。未进行新的放射化学抽样或分析。是公法117-81规定的,该报告的草案已发表了60天的公众评论,导致了30条评论,这些评论由PNNL在最终报告中发表。估计泻湖生物群的变化甚至较小。pnnl确定风暴潮与逐渐的海平面上升对整个环礁的动员和运输的影响最大。风暴情景是根据历史风暴和公认的天气和全球气候模型开发的。该研究估计了当前条件的九种潜在情景的辐射暴露,以及在2090年假设的辐射暴露,包括符文圆顶的假设失败。对于暴风雨圆顶保持完整的风暴场景,据估计,污染物放射剂量的变化估计在所有岛屿上低于0.1 MREM/年。由于符合人圆顶的假设失败,放射剂量估计在所有居住的岛屿上均低于0.2 mREM/年。总体低辐射暴露是由于放射性核素的暴风雨重新分布到更深的水域,从而提供了增加的距离,屏蔽和稀释,以及未来的情况,即放射性衰变。在圆顶假设失败之后的第一年,放射剂量的增加约为20 MREM可能会积聚在符文岛的地区。对泻湖Biota的放射剂量将暂时增加,但估计比美国和国际机构和组织建议的行动水平低约500-1000倍。
标题:ERBB2 扩增或突变型肺癌中 HER2 介导的细胞毒药物内化 标题:抗 HER2 ADC 在肺癌中的抗肿瘤活性 Bob T. Li 1,13#* 、Flavia Michelini 2,3#* 、Sandra Misale 4#* 、Emiliano Cocco 3 、Laura Baldino 2,3 、Yanyan Cai 2,3 、Sophie Shifman 3 、Hai-Yan Tu 1,5 、Mackenzie L. Myers 1 、Chongrui Xu 1,5 、Marissa Mattar 4,6 、Inna Khodos 4,6 、Megan Little 4,6 、Besnik Qeriqi 4,6 、Gregory Weitsman 7 、Clare J. Wilhem 1 、Alshad S. Lalani 8 、Irmina Diala 8 、Rachel A. Freedman 9 、 Nancy U. Lin 9 、 David B. Solit 1,3,11,13 、 Michael F. Berger 2,3,11 、 Paul R. Barber 7,12 、 Tony Ng 7,12 、 Michael Offin 1,13 、 James M. Isbell 10,13 、 David R. Jones 10,13 、 Helena A. Yu 1,13 、 Sheeno Thyparambil 14 、廖伟丽 14 、Anuja Bhalkikar 14 、Fabiola Cecchi 15 、David M. Hyman 1,13 、Jason S. Lewis 13,16,17 、Darren J. Buonocore 2 、Alan L. Ho 1,13 、Vicky Makker 1,13 、Jorge S. Reis-Filho 2,3 , 佩德拉姆Razavi 1,13、Maria E. Arcila 2、Mark G. Kris 1,13、John T. Poirier 1,4、Ronglai Shen 18、Junji Tsurutani 19、Gary A. Ulaner 4,13,14、Elisa de Stanchina 4,6、Neal Rosen 4,20、Charles M. Rudin 1,13 和毛里齐奥·斯卡尔特里蒂 2,3,20* 。 1 美国纽约州纽约市纪念斯隆凯特琳癌症中心医学系 2 美国纽约州纽约市纪念斯隆凯特琳癌症中心病理学系 3 美国纽约州纽约市纪念斯隆凯特琳癌症中心人类肿瘤学和发病机制项目 4 美国纽约州纽约市纪念斯隆凯特琳癌症中心分子药理学项目 5 中国广州广东省人民医院、广东省医学科学院广东省肺癌研究所 6 美国纽约州纽约市纪念斯隆凯特琳癌症中心抗肿瘤评估核心设施 7 英国伦敦国王学院 Richard Dimbleby 癌症研究系 8 美国加利福尼亚州洛杉矶 Wilshire Blvd 10880 Puma Biotechnology 90024 美国波士顿丹娜—法伯癌症研究所肿瘤内科系 10美国纽约州约克 11 美国纽约州纽约市纪念斯隆凯特琳癌症中心分子肿瘤学中心 12 英国伦敦大学学院保罗奥戈曼大楼伦敦大学学院癌症研究所 13 美国纽约州纽约市威尔康奈尔医学院 14 美国马里兰州罗克维尔 mProbe Inc 15 美国马里兰州盖瑟斯堡阿斯利康 16 美国纽约州纽约市纪念斯隆凯特琳癌症中心放射科 17 美国纽约州纽约市纪念斯隆凯特琳癌症中心放射化学和分子成像探针核心 18 美国纽约州纽约市纪念斯隆凯特琳癌症中心流行病学和生物统计学系 19 日本东京昭和大学肿瘤医学系高级癌症转化研究所 20 纽约纪念斯隆凯特琳癌症中心分子治疗中心纽约州约克