摘要:193m Pt 和 195m Pt 放射性核素是具有治疗吸引力的俄歇电子发射体,每次衰变的俄歇电子产量非常高。本文总结了核壳 (Au@Pt) 纳米粒子用于 HER2+ (人表皮生长因子受体 2) 乳腺癌和肝细胞癌的电子俄歇治疗应用的第一步研究。合成了覆盖铂壳的金纳米粒子 (30 nm),效率高 (>80%),并进一步进行了体外研究,例如结合亲和力、内化和细胞毒性。为了找到导致铂在 HepG2 细胞中产生细胞毒性的机制,使用 ICP-MS (电感耦合等离子体质谱) 测定了分离的细胞核和细胞质中的铂浓度。细胞核中缺乏铂表明细胞毒性作用与活性氧 (ROS) 和活性氮 (RNS) 的产生有关。使用合成的靶向生物缀合物 (Au@Pt-PEG-曲妥珠单抗) 对 SKOV-3 细胞系进行的研究表明,该制剂对 HER2+ 细胞具有高亲和力、其内化、其位于核周区域和部分核内位置。对 HER2 阴性细胞 MDA-MB-231 的特异性结合可以忽略不计,Au@Pt-PEG-曲妥珠单抗没有进入这些细胞。获得的结果很有希望,值得未来研究使用 193m Pt 和 195m Pt 放射性药物的俄歇电子疗法。
尽管在过去的20年中,前列腺癌的治疗发展方面取得了重大进展,但转移性前列腺癌仍然是致命的疾病。前列腺特异性膜抗原(PSMA)在前列腺癌细胞和转移性部位明显过表达,但血液 - 激进表达较低,但已成为该疾病的重要疗法靶标。b-发射和靶向PSMA的放射性核素治疗(RNT)均在临床发育中。这些代理中的几个已经显示出有希望的活动。但是,一部分患者患有原发性抗性疾病,并且次要抵抗总是发生。此外,这些疗法对健康器官的影响限制了其治疗窗口。阐明PSMA的生物学并表征PSMA靶向RNT的药代动力学和药效动力学特性以及耐药机制将促进旨在提高效率和安全性的治疗方法。在这篇综述中,我们概述了现有的PSMA靶向RNT和新型的RNT组合方法,例如具有新型Hormonal剂的那些(腺苷二磷酸二核酸糖) - 聚合酶抑制剂和免疫疗法,目前正在研究中。
Ryan P. Fitzgerald 1、Bradley K. Alpert 2、Daniel T. Becker 3、Denis E. Bergeron 1、Richard M. Essex 1、Kelsey Morgan 2,3、Svetlana Nour 1、Galen O'Neil 2、Dan R. Schmidt 2、Gordon A. Shaw 1、Daniel Swetz 2、R. Michael Verkouteren 1 和 Daikang Yan 2,3 1 美国国家标准与技术研究所,马里兰州盖瑟斯堡 20899,美国 2 美国国家标准与技术研究所,科罗拉多州博尔德 80305,美国 3 科罗拉多大学博尔德分校,科罗拉多州博尔德 80309,美国 ryan.fitzgerald@nist.gov bradley.alpert@nist.gov dan.becker@nist.gov denis.bergeron@nist.gov richard.essex@nist.gov kelsey.morgan@nist.gov svetlana.nour@nist.gov galen.oneil@nist.gov dan.schmidt@nist.gov gordon.shaw@nist.gov daniel.swetz@nist.gov r.verkouteren@nist.gov daikang.yan@nist.gov 我们提出了一种新的范例,用于对每单位质量溶液中的放射性核素活度 (Bq/g) 进行初步标准化。两个关键的启用功能是使用芯片级亚开尔文微量热仪进行 4π 衰减能谱测定和使用静电力平衡通过重量法喷墨分配直接实现质量。传统的可追溯性通常依赖于单放射性核素样品的化学分离、4π积分计数和其他光谱法来验证纯度,而本文描述的系统具有 4π计数效率和光谱分辨率,足以一次识别同一样品中的多种放射性核素。这使得混合放射性核素样品的活度浓度能够得到初步标准化。除了计量学之外,这种能力的主要优势在于环境和法医样品的分析,目前多核素样品的定量受到干扰,而这种定量分析可以实现。这可以在不需要化学分离或效率示踪剂的情况下实现,从而大大减少时间、放射性废物和由此产生的测量不确定性。关键词:α;β;低温探测器;质量计量学;微量热计;放射性;放射性核素计量学;跃迁边缘传感器。接受日期:2021 年 12 月 5 日 出版日期:2022 年 2 月 24 日 https://doi.org/10.6028/jres.126.048
过去 10 年中,有效的放射性核素疗法(如氯化镭-223、[ 177 Lu]Lu-DOTA-TATE 和 [ 177 Lu]Lu-PSMA 配体)的出现推动了分子放射治疗 (MRT) 研究的快速发展。正在进行的临床试验将有助于确定最佳给药方案并确定可能从这种治疗形式中受益的患者群体。临床研究也在进行中,以将新的 MRT 药物与其他抗癌药物相结合,特别强调 DNA 修复抑制剂和免疫疗法。本综述介绍了将 MRT 与外束放射治疗 (EBRT) 相结合的案例。结合两种放射治疗方式的技术和剂量学挑战在过去阻碍了进展。然而,人们已经认识到需要研究放射性核素治疗的具体放射生物学效应,而这方面的研究已经落后于 EBRT。这与成像技术、MRT 剂量测定工具和 EBRT 硬件方面的创新相结合,将促进未来使用这种重要的治疗组合。 !2021 年皇家放射学院。由 Elsevier Ltd. 出版。保留所有权利。
免责声明:洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占、免版税的许可,可以出于美国政府目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
国际原子能机构放射性同位素生产和辐射技术计划的主要目标之一是提高国际原子能机构成员国在部署用于医疗和工业应用的新兴放射性同位素产品和发生器方面的专业知识和能力,以满足国家需求,并吸收用于诊断和治疗应用的放射性药物的新发展。这将确保在质量保证框架内这些应用在当地可用。国际原子能机构放射性同位素和放射性药物系列出版物提供以下领域的信息:反应堆和加速器生产的放射性同位素、发生器和密封源的开发/生产,用于医疗和工业用途;放射性药物科学,包括放射化学、放射性示踪剂开发、生产方法和质量保证/质量控制 (QA/QC)。这些出版物拥有广泛的读者群,旨在满足科学家、工程师、研究人员、教师和学生、实验室专业人员和教员的需求。国际专家协助国际原子能机构秘书处起草和审查这些出版物。本系列中的一些出版物也可能得到相关领域国际组织和专业协会的认可或共同赞助。出版物分为两类:国际原子能机构放射性同位素和放射性药物系列和国际原子能机构放射性同位素和放射性药物报告。
1。医学肿瘤科,彼得·麦卡利姆癌症中心,澳大利亚墨尔本维克,2。彼得·麦卡卢姆爵士肿瘤科,墨尔本大学,墨尔本维克,澳大利亚3。皇家马斯登NHS基金会信托基金会,伦敦,英国4。英国伦敦癌症研究所5。分子成像和治疗性核医学,彼得·麦卡卢姆癌症中心,墨尔本维克,澳大利亚奔跑的标题:与疗法组合的独立关键词:PSMA,放射性核素治疗,Theranostics。lu-psma,前列腺癌对应作者:
摘要:胶质母细胞瘤(GB)仍然是最致命的脑肿瘤,其特征是锻炼率高和耐药性。在GB中常见受体酪氨酸激酶的过表达和/或突变,随后导致许多下游途径激活对肿瘤进展和耐药性产生关键影响。因此,已经研究了受体酪氨酸激酶抑制剂(RTKI),以改善GB的惨淡预后,以发展成一个个性化的靶向治疗策略,并具有更好的治疗结果。在诊所已批准了许多RTKI,几种放射性药物是(前)临床试验的一部分,是一种非侵入性方法,可以鉴定可以从RTKI中受益的患者。后者打开了pheranostic应用的范围。在这篇综述中,提出了RTKI的当前治疗,核成像和靶向放射性核素治疗的现状。焦点将基于七个酪氨酸激酶受体,基于它们在GB中的核心作用:EGFR,VEGFR,MET,PDGFR,PDGFR,FGFR,EPH受体和IGF1R。最后,通过分析TKI的结构和生理特征,并通过有希望的临床试验结果,根据它们成为新的治疗性GB放射性药物的潜力选择了四个小分子RTKI。
摘要:近年来,放射性核素治疗 (RT) 和靶向放射性核素治疗 (TRT) 在癌症治疗中引起了极大兴趣。这是因为临床前和临床研究都取得了令人鼓舞的结果。然而,接受 RT 或 TRT 的患者中只有一小部分获得完全缓解。因此,已经采取了多种策略来改善 RT 和 TRT 结果,包括将这些治疗与其他成熟的抗癌疗法(例如化疗)相结合。将 RT 和 TRT 与具有不同作用机制的其他疗法相结合是一种有前途的策略。对于前列腺癌和乳腺癌这两种全球最常见的癌症类型,已经评估了几种联合疗法。在这篇综述中,我们将概述目前用于或正在研究的与激素疗法、化疗、免疫疗法和外照射放射疗法相结合用于治疗前列腺癌和乳腺癌的 RT 和 TRT 药物。
