摘要:大型复合结构,例如在风能应用中使用的结构,依赖于热量的大规模聚合在令人印象深刻的大规模上。为了实现这一目标,传统的热固性聚合需要升高温度(> 100°C)和延长的治疗持续时间(> 5 h),以进行完全转换,因此需要使用超大烤箱或加热的模具。反过来,这些要求导致能源密集型聚合,从而产生了高生产成本和流程排放。在这项研究中,我们开发了可以在室温下通过变换的“化学加热”概念在室温下启动的热固性聚合,其中使用次级反应的放热能量来促进一级热代理聚合的加热。通过利用氧化还原引起的甲基丙烯酸甲酯自由基聚合作为放热化学能的来源,我们可以达到峰值反应温度> 140°C,以启动环氧 - 酸性热体的聚合,而无需外部加热。此外,通过采用特洛伊甲基丙烯酸甲酯单体在甲基丙烯酸酯和环氧树脂 - 酸酐结构域之间诱导混合,我们实现了与竞争性热力学特性和可调性的均质混合聚合物材料的合成。在此,我们为我们的创新化学加热方法建立了概念概念,并主张其工业整合,以更广泛地对风叶片和大型复合零件进行更节能和简化的制造。关键词:能源效率,制造,复合合成,热固性,双重治疗,化学加热,可回收划分■简介
摘要对电池材料有关其微观结构的分析提供了有关其在目标应用中的性能的关键见解,例如,就电导率,耐用性或对破坏性损坏时的破坏性放热反应的阻力而言。通常,为此目的,需要在大型视野上进行高分辨率扫描,这意味着迅速增加数据集大小。这项工作介绍了大数据分析方法整合分割和量化技术,这些方法正在用大型高分辨率计算机断层扫描数据进行扩展,以生成丰富的计算机断层扫描数据。随后的可视化量支持最终决策。该方法的代表性结果在可商购的18650圆柱形锂离子电池中证明。
Piranha 溶液非常活跃,会放热,并且具有爆炸性。它很可能会变热,超过 100°C。小心处理!在制备 Piranha 溶液时,务必将过氧化物添加到酸中。H 2 O 2 应在工艺前立即添加,因为它会立即产生放热反应并释放气体(压力)。如果 H 2 O 2 浓度达到或超过 50%,则可能会发生爆炸。Piranha 溶液会与任何有机材料发生剧烈反应。避免与不相容的材料混合,例如酸、碱、有机溶剂(丙酮、异丙醇)或尼龙。在将所有基质放入 Piranha 溶液之前,务必确保已冲洗并干燥所有基质。仅使用干净的玻璃或 Pyrex 容器;Piranha 溶液与塑料不相容。
Perkin Elmer Pyris 6 DSC 差示扫描量热仪是一种热通量 DSC。热流是通过测量非常精确已知的热阻上的温差来确定的。该分析仪用于表征材料、设计产品、预测产品性能、优化加工条件和提高质量。Pyris 6 DSC 系统允许直接量热测量、表征和分析材料的热性能。在 PC 上的 Pyris Windows 软件的控制下,Pyris 6 DSC 被编程为从初始温度到最终温度,经历样品材料中的转变,例如熔化、玻璃化转变、固态转变或结晶。通常,Pyris 6 DSC 被编程为以线性速率扫描温度范围,以研究这些吸热和放热反应。吸热和放热可以显示为相对于基线的向上或向下偏差。Pyris 6 DSC 还可用于进行等温实验。
摘要我们经常观察到一些具有层状阴极材料的失控锂离子电池内部温度比现有热失控模型预测的要高得多。此外,正极活性材料中原有的金属(如 Co、Ni 和 Mn)经常出现在温度变得非常高的电池中。有人推测金属的形成可以归因于岩盐物质(MO,其中 M 是金属)的还原,或锂化活性材料(LiMO 2 )与 CO 2 的反应。我们提出了金属形成的另一种解释,这也会导致非常高的电池温度,即 Al 正极集流体和正极活性材料之间的铝热反应。与提到的 MO 和 LiMO 2 的反应相反,这些反应是高度放热的。本文介绍了铝热反应的化学性质。在失控模型中加入铝热反应可能会改善热失控时锂离子电池的温度预测。
混合元素粉末是金属添加剂粉末中合金粉末的新兴替代品,这是由于可与其生产的各种合金范围及其不开发新颖的原料所节省的成本所致。在这项研究中,通过在BE TI-185粉末上进行SLM,在通过Infra-Red成像和通过同步X射线衍射跟踪表面温度的同时,研究了SLM期间的原位合金和并发微观结构演变。然后,我们进行了mortem电子显微镜(反向散射电子成像,能量分散X射线光谱和电子反向散射衍射),以进一步深入了解微观结构的发展。我们表明,尽管放热混合有助于熔化过程,但激光熔化仅在合金和未混合区域的混合物中产生。全合金和一致的微观结构仅通过在热影响区域的进一步循环才能实现。2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
混合元素粉末是金属增材制造中预合金粉末的一种新兴替代品,因为用它们可以生产的合金范围更广,而且由于不开发新原料而节省了成本。在本研究中,通过在 BE Ti-185 粉末上进行 SLM,同时通过红外成像跟踪表面温度并通过同步加速器 X 射线衍射跟踪相变,研究了 SLM 过程中的原位合金化和同时发生的微观结构演变。然后,我们进行了事后电子显微镜检查(背散射电子成像、能量色散 X 射线光谱和电子背散射衍射),以进一步了解微观结构的发展。我们表明,虽然放热混合有助于熔化过程,但激光熔化只会产生合金区域和未混合区域的混合。只有通过在热影响区进一步热循环才能实现完全合金化,从而获得一致的微观结构。 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
ARA ® XTREME PY 2100 US 是一种粘度极低、功能性强、纯度高的胺基树脂,具有相对良好的储存稳定性。它固化速度非常快,可生产出具有极高热变形温度的产品。ARA ® XTREME PY 2100 US 是一种特别有效的树脂,适用于各种配方应用,包括粘合剂、层压系统等。它可以用作粘度调节剂,也可以与慢反应性树脂一起使用以提高其固化速度;但是,由于其快速固化特性,在选择固化剂和固化条件时必须谨慎。即使是适量的树脂,在与脂肪胺固化时,也会产生足够的放热,导致烧焦和冒烟。如果芳香胺硬化系统在过高的温度下凝胶化,或者单独使用或与芳香族硬化剂结合使用催化剂(例如三氟化硼单乙胺),也会出现这种情况。 ARA ® XTREME PY 2100 US 是对氨基苯酚的三缩水甘油酯,其化学结构如下所示。