NAVSAFECOM 发现,由于未遵守安全规程和指示,过失射击 (ND) 事件显著增加。OPNAVINST 3591.1E,小型武器训练和资格指导,要求在所有枪支操作活动中严格遵守武器安全规则和适当的监督,以防止 ND。这些事件的主要原因包括:
局部放电测量是最重要的诊断方法之一,在交流电压下得到了深入研究。此外,机器学习已经建立,并已成功用于自动识别局部放电缺陷多年。对于交流电压,有几种诊断方法和解释工具。在直流电压领域情况并非如此,因此需要重要的工具来解释结果。本文研究了 HVDC GIS/GIL 的典型局部放电缺陷,但这些方法也可以用于其他高压设备。机器学习技术是用 MATLAB 和 WEKA 实现的。从局部放电脉冲序列中得出的统计参数被用作特征。对特征进行了层次聚类,以分析局部放电缺陷之间的可分离性。使用三种流行算法(SVM、k-NN、ANN)进行分类。这些算法的参数各不相同,并相互比较。SVM 明显优于其他分类器。
随着越来越多的可再生能源被安装以实现离网地区的可持续能源使用,储能部署变得十分必要。然而,电池价格仍然阻碍了大规模部署。飞轮是为微电网应用开发的储能技术之一,它通过旋转动能储存能量,通常适用于大功率应用。随着长放电飞轮的出现,例如 Amber Kinetics ® 和 Beacon Power ® 正在销售的飞轮,它们可以用于以电池为主的微电网。本研究对微电网应用中的长放电飞轮和公用事业规模锂离子电池进行了技术经济比较和敏感性分析。结果显示,在测试配置中,基于飞轮的混合能源系统的平准化电力成本 (LCOE) 最低,为 0.345 美元/千瓦时,可再生能源占 62.4%。长放电飞轮相对于锂离子电池在微电网市场上的竞争力取决于柴油价格、锂离子电池价格的预期下降以及锂离子电池寿命的提高。
正常状态下,通过负载对电池放电, DW02R 电路的 VM 端电压将随放电电流的增加而升高。如果放电电 流增加使 VM 端电压超过过电流放电保护阈值 V EDI ,且持续时间超过过电流放电保护延迟时间 tEDI ,则 DW02R 进入过电流放电保护状态;如果放电电流进一步增加使 VM 端电压超过电池短路保护阈值 V SHORT ,且 持续时间超过短路延迟时间 t short ,则 DW02R 进入电池短路保护状态。
本论文由 eCommons 的论文和学位论文免费提供给您,供您开放访问。它已被 eCommons 的授权管理员接受并纳入研究生论文和学位论文。欲了解更多信息,请联系 mschlangen1@udayton.edu、ecommons@udayton.edu。
每只猴子都接受过触觉和视觉任务的训练,并在得到提示时在它们之间切换。视觉任务是一个变暗检测任务:计算机屏幕上出现三个白色方块,在随机间隔后,随机选择其中一个方块略微变暗。在视觉任务期间,触觉刺激持续不减,且与视觉刺激不一致。每只猴子执行不同的触觉任务。两只猴子辨别在远端指腹(15 毫米 s - 1 )上扫描的凸起字母(6.0 毫米高),当手指上的字母与计算机屏幕上显示的目标字母匹配时按下按键 2 。触觉字母的高度接近人类的分辨率极限;猴子的表现与人类辨别相同字母的表现相同 2 。计算机屏幕上显示的目标字母很大(高 0.38 英寸),在触觉任务期间持续显示。对于猴子 M1,在研究一组神经元的试验中,目标字母保持不变( ,45 分钟)。对于猴子 M2,目标字母在每次正确反应后随机变化(平均每三或四个字母变化一次;即大约每 7.5±10 秒)。猴子 M3 辨别连续呈现在远端指腹上的条(6.0 毫米长)是具有相同还是不同(90 8 )的方向。所有三个触觉任务对人类来说都很难,但 M2 的任务尤其费力,因为触觉目标不断变化。猴子在所有任务中的反应大约有 90% 正确。每只猴子被提示每 7±8 分钟在触觉和视觉任务之间切换一次,同时从位于对侧 SII 皮质的多达七个微电极 3 进行单个单元记录,该区域已知受注意力影响 2,4,5 。
实用产品开发。锂离子电池已成为替代镍氢电池的主要候选者,然而,对续航时间更长、充电速度更快、续航里程更远的电动汽车的需求,使得后锂离子电池材料、结构和系统的研究变得多样化[1-3]。一种潜在的、有吸引力的替代品是固态电池;其前提是用固态离子导体取代锂离子电池中常见的有机液体电解质[4,5]。宽电化学窗口、不可燃性以及实现锂金属阳极的潜力是将固态电池推向下一代储能前沿的优势。然而,要与传统的液体电解质竞争,实现高锂离子电导率是一个巨大的挑战。固态离子领域发展迅速,各种能够在中等温度下实现快速锂离子传输的锂离子导体正在实现下一代电化学存储。聚合物、凝胶、熔融盐和陶瓷电解质在集成到实际设备中时各有优势,也面临挑战;然而,硫化物基电解质已成为有力竞争者,其电导率可匹敌甚至超越有机液体电解质 [6]。LGPS、Li 7 P 3 S 11 玻璃陶瓷、银锗石 Li 9.54 Si 1.74 P 1.44 Cl 0.3 是表现出优异 Li + 电导率的电解质例子,尽管在电化学窗口和抵抗锂金属强还原电位的能力方面结果不一[5,7-9]。Sakamoto 等人 [10] 通过拉曼光谱证明了硫代磷酸锂 Li 3 PS 4 在与对称 Li-Li 电池循环后还原形成 Li 2 S 和 Li 3 P 产物,这已通过原位 XPS 实验证实并通过 DFT 计算进行预测 [11,12]。研究表明硫化物电解质还会与高压正极发生反应,形成的薄界面足以降低电池容量和循环能力。为实现该技术,用 LiNbO 3 进行表面改性可以阻碍化学交叉扩散并减少空间电荷层的锂损耗 [13]。高能正极研究对于实现全固态锂电池至关重要。硫作为高能量密度正极的出现是正极、电解质和隔膜技术的产物,旨在实现高倍率下的可逆容量。硫的优点是理论容量高(1675 mAh g -1 ),这平衡了低平均正极放电电位(~2.0 V),从而产生高理论能量密度(~2600 Wh kg -1 )。然而,必须克服重大挑战,例如硫和多硫化物溶解在电解质中,有机电解质的持续分解以及锂金属的树枝状生长。其结果是无法在长时间循环过程中保持容量,而解决方案则是采用精妙的材料设计和工程来封装和保护活性材料。碳、聚合物和隔膜技术在实现高负载和可持续硫正极方面都发挥了至关重要的作用 [14-16]。或者,更换有机液体电解质可以提供一条多方面的途径来解决持续的 SEI 形成和多硫化物溶解问题,因此固态 Li-S 电池有可能拥有出色的循环寿命。事实上,利用固体电解质已显示出无需封装活性材料就能提高容量保持率,这为高负载活性材料以增加能量密度并降低成本铺平了道路 [17-20]。为了实现这样的改进,阐明放电机制将加深对电化学反应的理解,并为进一步改进扩大电池电极所需的设计和工艺提供见解。在这里,我们通过分离碳、固态电解质(非晶态 Li 3 PS 4,LPS)和硫/硫化锂这三种基本成分的反应性,研究了固态硫阴极复合阴极的制备过程如何影响电化学放电。研究人员最近意识到
>920(:&-."&0(0;'#&)"/"#$B,"(-&$1&'&6",0+$()9+-$2&B2$)9+-&-."&<=>&2$896-("66&06& +.'2'+-"20F")?&D026-%&'&6-';6;+'##E&60:(0N+'(-&6',B#"&$1&)"/0+"6&06&19##E&-"6-")&960(:& '9-$,';+&-"6-&"c90B,"(-?&&d"("2'##E%&,$6-&$1&-."&)'-'&6.""-&B'2',"-"26&'2"& ,"'692")&)920(:&-.06&'9-$,'-")&-"6-?&&& & ="+$()%&'&6B"+0'#0F")&<=>&-"6-&6E6-",&06&96")&-$&'BB#E&'&60,9#'-")&<=>&B9#6"&-$&-."& )"/0+"?&&3."&6B"+0N+&+.'2'+-"206;+6&$1&-."&<=>&B9#6"&'2"&+$(-2$##")&8E&-."&-"6-& .'2)*'2"?&&D$2&"A',B#"%&-."&',B#0-9)"&'()&<=>&,$)"#&+'(&8"&6"#"+-")?&&V'20$96&<=>& ,$)"#6&*0##&8"&)06+966")&#'-"2%&89-&0(&6.$2-&-."&<=>&,$)"#&6"-6&-."&+'B'+0-'(+"%& 0()9+-'(+"&'()&+.'2:"&$1&-."&<=>&B9#6"&-$&60,9#'-"&'&2"'#&*$2#)&<=>&"/"(-?&&>920(:& -."&-"6-&-."&<=>&B9#6"&06&'BB#0")&-$&,'(E&)0X"2"(-&+$,80(';$(6&$1&)"/0+"&B0(6&1$2&'& 60:(0N+'(-&6',B#"&$1&)"/0+"6?&&O#6$%&)0X"2"(-&#"/"#6&$1&<=>&B9#6"6&'2"&'BB#0")&-$&-."& )"/0+"^&1$2&"A',B#"%&GKV%&MKV%&WKV%&'()&6$&$(?&& & D0('##E%&-."&+$,B2"."(60/"&-"6-&06&2"B"'-")&$(&-."&)"/0+"6?&&3."&<=>&2';(:&$1&-."& )"/0+"&06&)"-"2,0(")&8E&-."&.0:."6-&<=>&#"/"#&-.'-&'##&)"/0+"6&0(&-."&6',B#"&B'66?&&3.06& <=>&2';(:&06 -")&0(&-."&'86$#9-"&,'A0,9,&2';(:&-'8#"&$1&-."&)'-'&6.""-?&&&
安装后立即根据需要每周两次新种植植被,直到建立植被(通常为六周)。确保草皮密集且健康。如有必要,请重新播种或重新种子,以确保茂密的草地。在排水区保持稳定的地面覆盖,以减少沉积物负荷。每年两到三次,将割草条,并收集剪剪,以促进厚植被的生长,并以最佳的污染物去除效率。草皮草不应短于3至5英寸,并且可以根据美学要求的高至12英寸。森林过滤条不需要这种类型的维护。每年一次,必要时将充气土壤。每年一次,将测试土壤pH,并在必要时添加石灰。每年检查BMP,以确保作为雨水最佳管理实践的正确功能和有效性。建立植被后,每季度进行一次检查一次,每次暴风雨事件大于1.0英寸,此后每年进行检查。将操作和维护记录保存在已知位置,并根据要求提供它们。执行建议的维护活动如下: