摘要:考虑改进配备电池的混合太阳能-风能系统的实施原理,该系统用于本地对象的自用,并控制从电网消耗的电力。目的是增加可再生能源的能源使用程度,同时限制电池的放电程度,同时考虑到负载计划和能源发电相对于计算(预测)值的偏差。当电力消耗减少且能源使用程度增加时,可以补偿负载计划和可再生能源发电相对于计算(预测)值的偏差。通过根据给定时间离散性的充电状态偏差校正有功功率消耗,可实现电池充电状态计划与计算计划的一致性。通过考虑随着能源使用程度的增加而测量的负载功率值,改进了控制算法。此外,使用校正可以将电池的放电深度限制在可接受的值。开发了 24 小时能源过程数学模型,其中考虑了估算充电状态的误差。使用可再生能源发电档案数据进行建模的结果证实了所提出的解决方案是有效的。对于 2 月份平均月发电量的应用,修正可将电力消耗减少 16-21%,并将三种电价的支付成本减少 24-27%。
电化学储能是可再生能源发电系统的重要组成部分,有助于建设低碳社会。铅炭电池是一种改进的铅酸电池,将碳加入负极板。它弥补了铅酸电池无法处理瞬间大电流充电的缺陷,具有安全性高、性价比高、可持续发展等优点。铅炭电池的回收效率为98%,回收过程符合所有环境和其他标准。储能用铅炭电池还需要具备深度放电能力,尽管放电深度对铅炭电池正极板的失效有显著影响。本研究优化和增强了铅炭电池的正极板,使其能够同时执行大电流充电(340.255 A)和深度放电(70% DOD)操作。选择合适的铅合金、改善正极板栅的结构以及调节板栅的固化和干燥过程都是优化和改进过程的一部分。升级后的铅碳电池循环寿命为7680次,在相同条件下比未升级的铅碳电池寿命延长93.5%。本文制造的大容量(200 Ah)工业铅碳电池是一种可靠且经济高效的储能选择。
摘要 发展中国家的农村社区由于电网延伸成本高昂而无法用电。本文提出一种可再生能源混合系统 (HRES) 作为解决方案。HRES 由太阳能、风能和电池储能 (BES) 组成。本文以东非坦桑尼亚 Shinyanga 地区的 Ngw'amkanga 村为案例研究。本文提出了一种迭代方法来确定所需风能和太阳能光伏 (PV) 发电规模,假设项目寿命为 25 年,系统最低年化成本 (ACS)。项目寿命固定在主要部件太阳能光伏的寿命 25 年。进行迭代是为了满足能源需求,确保 BES 全年充电。所需的 BES 具有三天的自主权,最大电池放电深度为 50%。在最低 ACS 下,由于该地点风力不足,HRES 仅包含太阳能光伏和 BES。 HRES 的平准化能源成本 ( LCOE ) 为 27.18 元/千瓦时,由用户支付。这比本文讨论的坦桑尼亚与电网连接的小型电力生产商便宜。关键词:可再生能源;风能发电;太阳能光伏;年化成本
尽管在有效载荷和航程方面存在限制,货运无人机在应急物流和远程配送方面仍具有广阔的应用前景。在本研究中,我们通过开发一种高容量 3.84 kW 电池来应对这些挑战,该电池专为在苛刻地形中运行的 50 公斤有效载荷货运无人机而设计。我们专注于应急货物的运输,研究无人机设计的关键方面和电池组开发的细节,包括电池选择、内部配置以及用于电池平衡、充电/放电和高级电池管理的关键电路。一项关键创新是集成反向传播人工神经网络 (BPANN) 算法来预测放电深度 (DoD) 和充电状态 (SoC)。研究结果表明,BPANN 提供高度准确的预测,DoD 的误差百分比低至 0.12%,SoC 的误差百分比低至 0.02%,确保电池运行优化和安全。进行了全面的现场测试,以评估所提出的电池平衡策略、强大的电池管理系统 (BMS) 和 BPANN 实施的有效性。我们研究了无人机在 DoD、SoC 和使用设计的电池组的整体现场操作方面的性能,并证明了其在实际应用中的可行性和潜力。
摘要 — 可再生能源的发展强调了对储能系统 (ESS) 的需求,以减轻这些能源的不可预测性和多变性,但高投资成本、零星使用和需求不匹配等挑战阻碍了它们的广泛应用。作为回应,共享储能系统 (SESS) 提供了更具凝聚力和更高效的 ESS 使用方式,提供了更易于访问且具有成本效益的储能解决方案来克服这些障碍。为了提高 SESS 的盈利能力,本文设计了一种基于长期合同和实时租赁商业模式的多时间尺度资源配置策略。我们首先为 SESS 构建了一个生命周期成本模型,并介绍了一种通过 SESS 内的循环次数和放电深度来估算多个电池组的退化成本的方法。随后,我们从容量和能量的角度设计了各种长期合同,建立了关联模型和实时租赁模型。最后,提出了基于用户需求分解的多时间尺度资源分配。数值分析验证了基于长期合同的商业模式在经济可行性和用户满意度方面优于单纯在实时市场中运营的模式,有效降低了电池的退化,并且利用SESS的聚合效应可以额外增加10.7%的净收入。
AC 交流电 Ah 安培小时 BESS 电池储能系统 BLS 美国劳工统计局 BMS 电池管理系统 BOP 电厂平衡 BOS 系统平衡 C&C 控制与通信 C&I 土木与基础设施 CAES 压缩空气储能 DC 直流电 DOD 放电深度 DOE 美国能源部 E/P 能源发电 EPC 工程、采购与施工 EPRI 电力研究院 ESGC 储能大挑战 ESS 储能系统 EV 电动汽车 GW 吉瓦 HESS 氢能储能系统 hr 小时 HVAC 供暖、通风与空调 kW 千瓦 kWe 千瓦电 kWh 千瓦时 LCOE 平准化能源成本 LFP 磷酸铁锂 MW 兆瓦 MWh 兆瓦时 NHA 国家水电协会 NMC 镍锰钴 NRE 非经常性工程 NREL 国家可再生能源实验室 O&M 运营与维护 PCS 电力转换系统 PEM 聚合物电解质膜 PNNL 太平洋西北国家实验室 PSH 抽水蓄能水力发电 PV 光伏R&D 研发 RFB 氧化还原液流电池 RTE 往返效率
摘要 电力需求研究的结果主要表明,发展中国家目前的供需缺口已经非常大,在“一切照旧”的情况下,这一缺口将变得更加严重。没有电,企业或家庭很难运转,而那些幸运地接入电网的人通常会发现电力不稳定且不可预测。因此,非洲人使用污染严重的离网替代能源自行发电,其发电成本是电网发电成本的两倍多。在非洲,大多数国家的电气化率极低,因此建立了微电网,试图将电力输送到农村居民。分布式发电带来了一些问题,如电能质量保证(来自几个发电站)、平衡能源供需、安全、电费管理的智能计量等。本文对发展中国家农村电气化的微电网进行了规模估算。本研究采用的方法包括测试台的特性描述、测试台的尺寸确定以及从测试台收集数据,以便高效设计微电网。本研究采用的程序表明,它有助于消除尺寸过大、能源浪费的问题,降低电池存储成本,提高电池的放电深度和电池组的能量充电周期。这是因为这项研究工作采用了测试台的实时现场测量,还捕获了使用区域特有的太阳能数据读数。关键词:微电网、智能电网、ELDI、电气化、智能城市
AC 交流电 aFRR 自动频率恢复储备 BRP 平衡责任方 BESS 电池储能系统 BMS 电池管理系统 CED 累积能量需求 DC 直流电 EF 环境足迹 ESG 环境、社会和公司治理 EU 欧盟 FU 功能单元 DoD 放电深度 EOL 寿命终止 FCR-D 频率遏制储备 – 干扰 FCR-N 频率遏制储备 – 正常 FFR 快速频率储备 IEA 国际能源署 GWP 全球变暖潜能值 GHG 温室气体 ISO 国际标准化组织 LCA 生命周期评估 LCI 生命周期清单 LCIA 生命周期影响评估 LiB 锂离子电池 LFP 磷酸铁锂 LMO 锂锰氧化物 LTO 钛酸锂 mFRR 手动频率恢复储备 NMC 锂镍锰钴氧化物 NaS 硫钠 PbA 铅酸电池 PCS 电力转换系统 PEF 产品环境足迹 PEFCR 产品环境足迹分类规则 RoW 世界其他地区 RRF 恢复和弹性设施 SvK Svenska kraftnät TSO 传输系统操作员 V oc 开路电压 VRB 钒氧化还原
摘要。储能系统 (ESS) 在日常生活中不可或缺,有两种类型,可以提供高能量和高功率密度。混合储能系统 (HESS) 是通过组合两个或多个储能单元来获得,以使两种类型都受益。能源管理系统 (EMS) 对于确保 HESS 的可靠性、高性能和效率至关重要。EMS 最关键的参数之一是电池健康状态 (SoH)。对 SoH 的持续监控可提供有关系统状态的重要信息,检测异常的性能下降并实现计划维护,防止系统故障,有助于将效率保持在始终如一的高水平,并通过减少停机时间来帮助确保能源安全。SoH 参数取决于放电深度 (DoD)、充电和放电速率 (C-rate) 和温度等参数。这些参数的最佳值直接影响电池的寿命和运行性能。所提出的自适应能量管理系统 (AEMS) 使用电池的 SoH 参数作为控制输入。它通过动态更新 C 速率和 DoD 参数来提供最佳控制。此外,集成到系统中的超级电容器具有基于滤波器的功率分离功能,可防止电池深度放电。在所提出的 AEMS 控制下,据观察,HESS 比仅依赖电池的系统多产生 6.31% 的能量。由 AEMS 有效管理的超级电容器和电池之间的这种有益关系为从电动汽车到可再生能源存储系统等应用中的先进能源管理开辟了新的可能性。
摘要:本文介绍了一个离网完全可再生能源微电网 (MG) 的技术经济规划和综合敏感性分析,该微电网旨在用作电动汽车 (EV) 充电站。使用技术、经济和技术经济特性比较了不同数量的风力涡轮机和太阳能电池板以及由新锂离子、二次锂离子和新铅酸电池组成的单一和混合储能系统 (ESS) 的不同可能计划。提出了一种改进的能源成本 (MCOE) 指数,其中包括电动汽车未满足的能源损失和 ESS 的现值,该指数可以将重要的技术和经济标准结合在一起,以便做出技术经济决策。使用 MCOE、总负荷和总成本提供双目标和多目标决策,其中从不同方面引入不同的计划作为最佳计划。案例研究所需的风力涡轮机和太阳能电池板的数量是使用天气数据并根据电动汽车数量数据假设电动汽车需求相对于 ESS 容量获得的,根据所提出的模型可以推广到其他案例研究。通过对混合 ESS 支持的 MG 的研究,研究了两种不同的全球能源管理系统 (EMS) 对技术经济特征的影响,包括基于功率共享和基于优先级的 EMS。根据 MCOE 和总负载,新型和二手两种形式的单个锂离子电池 ESS 都显示出最佳计划;然而,二手锂离子显示的总成本较低。新型和二手锂离子电池 ESS 的混合 ESS 展示了新型和二手类型的优势,即更深的放电深度和更便宜的计划。