镍镉系统使用与镍铁系统相同的正极和电解质,并结合金属镉负极。电池反应如表 10.1 所示,其标称开路电压为 1.3 V。从历史上看,电池的发展与镍铁的发展同步,性能相似。镍镉技术因具有高比功率(超过 220 W/kg)、长循环寿命(高达 2000 次循环)、高电气和机械滥用耐受性、宽放电电流范围内电压降小、快速充电能力(18 分钟内约 40% 至 80%)、宽工作温度范围(-40 至 85°C)、低自放电率(<0.5%/天)、由于腐蚀可忽略不计而具有出色的长期储存性能以及多种尺寸设计等优点而取得了巨大的技术进步。然而,镍镉电池也存在一些缺点,包括初始成本高、电池电压相对较低以及镉的致癌性和环境危害。镍镉电池通常可分为两大类,即通风型和密封型。通风型有许多替代品。通风烧结板是较新的发展,具有较高的比能,但价格较贵。它的特点是放电电压曲线平坦,大电流速率和低温性能优越。密封镍镉电池采用特定的电池设计特点,可防止过度充电期间因气体产生而导致电池内压力积聚。因此,该电池无需维护。EV 和 HEV 配置的镍镉电池的主要制造商是 SAFT 和 VARTA。最近采用镍镉电池供电的电动汽车包括克莱斯勒 TE Van、雪铁龙 AX、马自达 Roadster、三菱 EV、标致 106 和雷诺 Clio。
摘要 典型的直流放电由一端的负阴极和另一端的正阳极组成,两者之间由充满气体的间隙隔开,放置在一个长玻璃圆筒内。阴极和阳极之间需要几百伏的电压来维持放电。两个电极之间形成的放电类型取决于工作气体的压力、工作气体的性质、施加的电压和放电的几何形状。我们讨论了放电的电流-电压特性以及辉光放电区形成的独特结构。直流辉光放电出现在 0.5 – 300 Pa 压力下的放电电流范围从 μ A 到 mA。我们讨论了在直流辉光放电中观察到的各种现象,包括阴极区域、正柱和条纹。直流辉光放电由由于离子轰击而从阴极靶发射的二次电子维持。几十年来,直流辉光放电一直被用作溅射源。然后它通常以受阻异常辉光放电的形式运行,所需施加的电压在 2 – 5 kV 范围内。通常,阴极靶(要沉积的材料)连接到负电压电源(直流或射频),并且基底支架面向靶。相对较高的工作压力(2 至 4 Pa 范围内)、高施加电压以及需要导电靶,限制了直流辉光放电作为溅射源的应用。为了降低放电电压并扩大工作压力范围,通过在阴极靶后面添加永磁体来施加磁场,增加靶附近电子的寿命。这种布置称为磁控溅射放电。介绍了磁控溅射放电的各种配置及其应用。此外,还简要讨论了直流放电在化学分析中的应用、彭宁放电和空心阴极放电及其一些应用。
• 集成 1A 电源路径线性电池充电器 – 输入电压工作范围为 3.0V 至 18.0V – 输入电压最高可耐受 25V – 可配置电池调节电压,精度为 ±0.5%,范围为 3.5V 至 4.65V,步长为 10mV – 5mA 至 1A 可配置快速充电电流 – 55mΩ BATFET 导通电阻 – 高达 2.5A 的放电电流,可支持高系统负载 – 完全可编程的 JEITA 配置文件,可在整个温度下安全充电 • 用于为系统供电和为电池充电的电源路径管理 – 除电池电压跟踪和输入直通选项外,调节系统电压范围为 4.4V 至 4.9V – 可配置的输入电流限制 – 动态电源路径管理可优化弱适配器的充电 – 可选择适配器或电池为系统供电 – 先进的系统复位机制 • 超低静态电流模式 – 电池模式下电池静态电流为 2μA – 运输模式下电池静态电流为 15nA •集成降压转换器,具有 I 2 C 和 GPIO 可编程 DVS 输出 – 系统静态电流为 0.36μA – 输出电压为 0.4V 至 1.575V,步长为 12.5mV 或输出电压为 0.4V 至 3.6V,步长为 25mV/50mV – 输出电流高达 600mA • 集成降压-升压转换器,具有 I 2 C 可编程 DVS 输出 – 系统静态电流为 0.1μA – 输出电压为 1.7V 至 5.2V,步长为 50mV – V SYS ≥ 3.0V、V BBOUT = 3.3V 时输出电流高达 600mA • 集成 I 2 C 可编程 LDO(LDO1 和 LDO2) – 静态电流为 25nA – 输出电压为 0.8V 至 3.6V,步长为 50mV – 输出电流高达 200mA – LDO1 可在运输模式下保持开启– 可配置 LDO 或旁路模式 – 专用输入引脚 • 集成故障保护以确保安全 – 输入电流限制和过压保护
太阳能发电是将阳光转化为电能的简单概念。自然界的能量来源之一是阳光。太阳能资源已被广泛用于通过太阳能电池为通信卫星供电。这些太阳能电池没有旋转部件,也不需要燃料,它们可以产生无限量的电能,这些电能直接来自太阳。因此,太阳能系统经常被认为是纯净且对环境有益的。与主电网不相连的太阳能系统称为独立系统。因此,考虑到昼夜循环,夜间太阳辐射为 0 W / m2,拥有备用电源至关重要。备用电源通常在电网系统中联网,但在离网系统中,备用电源必须是储能系统,例如电池、水泵储能、储热或超级电容器。由于这些独立系统的电压和电流不足以满足许多用途,因此太阳能模块通常通过串联许多太阳能电池来创建。在 MATLAB/SIMULINK 环境中使用超级电容器和 PV 电池设计和仿真直流微电网电源管理系统。在电池向负载供电的启动过程中,超级电容器用于弥补任何功率不足。还考虑了电池充电和放电电流的限制。仿真结果证明了所建议的电源管理方法的有效性。在所有模拟情况下,电池和超级电容器的充电状态都保持在允许范围内,并且电源和负载之间的功率流保持平衡。在电源管理策略获得最佳调整结果后,PV 和 PID 中的最大功率点 (MPP) 的扰动和观察 (P&O) 算法根据负载要求在负载处调整最佳结果。从仿真结果可以看出,该系统具有更好的结果,因为它在 1000 W/m2 期间补偿了多余的负载功率,并将电池输入增加了 162.261 W,即 69.836%。由于超级电容器作为二次储能的作用,因此影响不大。
51.2V/100Ah 96V/100Ah 120V/100Ah SAP 描述 OKAYA LITHIUM BATTERY 51.2V 100AH BESS 9.6KWH (96V/100AH-30S1P) OKAYA LITHIUM BESS 120V 12KWH SAP 代码 FOJLFIE10051C93MS1 FESS00000000000002 FESSLI012110000002 电池化学性质 LFP LFP LFP 电池类型 (圆柱形/方形) 方形 方形 方形 方形 电池标称电压/Ah 3.2V / 100Ah 3.2V / 100Ah 3.2V / 100Ah 电池机架电压(V) 51.2V 96V 121.6V 电池架容量(Ah) 100Ah 100Ah 100Ah 电池架能量额定值(kWh) 5.1 kWh 9.6kWh 12kWh 机架总数 NA NA NA 每机架电池模块数量 1 1 1 机架级配置 NA NA NA 电池模块配置 16S 1P 30S 1P 38S 1P 电池总数 16 30 38 持续充电电流(A) 0.5C 0.5C 0.5C 持续放电电流(A) 0.8C 0.8C 0.8C 电池架标称电压(V) 51.2V 96V 121.6V 电池架最小电压(V) 45V±2V 90V±2V 112V±2V 电池架最大电压(V) 56V±2V 108V±2V 135V±2V BMS类型 机架级 NA NA NA BMS类型 模块级 软件 软件 软件 机架尺寸 (长*宽*高)mm 562x202x338 760x347x365 1065x535x275 电池箱类型 金属柜 金属柜 金属柜 连接器类型 SB120连接器 SB175连接器 SB50 & SB120连接器 IP等级 IP21 IP21 IP21 线径 16sqmm 25sqmm 35sqmm 重量(kg) 50 kg 100kg 125 kg 电池寿命 循环寿命 >2000@80%DOD >2000@80%DOD >2000@80%DOD
索引词 – 太阳能光伏电源、电池、LED、超级电容器、双向 DC/DC 转换器。简介空气污染是使用汽油、柴油等化石燃料的传统汽车所带来的危险后果之一。由于快速的城市化导致交通拥堵,污染变得更加严重。为了获得无污染的环境,建议在车辆系统中增加可再生资源的使用。在汽车领域更多地使用无污染排放的电动汽车将减少化石燃料的消耗并保护环境。在过去的几年里,人们对电动汽车 (EV) 和混合动力电动汽车 (HEV) 产生了浓厚的兴趣,因为它们可以在减少各种交通工具的温室气体排放方面发挥重要作用,因此有可能成为未来内燃机汽车的替代品。如今,为了与加油站竞争,电池的充电速度应该尽可能快。风能和太阳能等可再生能源是最可用的资源,但由于这些能源可用的电力具有间歇性,因此使用混合储能系统。混合储能系统由电池和超级电容器组成,可提高电池的充电和放电速率,从而延长电池寿命。它展示了太阳能电池板和电池的相互作用,这样就可以从太阳能系统连续充电。这种配置代表太阳能系统不切实际,并且倾向于低效运行。研究了电池和超级电容器的混合。它介绍了电动汽车中光伏板 - 电池 - 超级电容器混合系统的运行。介绍了双向 DC/DC 转换器的方法,以便电池的放电电流应在限制范围内。研究了超级电容器的瞬态、充电、放电模式。在现有电动汽车的改进结构中,将与超级电容器和电池组合一起提供高效的性能。超级电容器用于提供启动和过载期间所需的大电流,并有助于提高电池的充电状态。该项目由六个部分组成。第一部分包括提出的方法,第二部分包括框图。第三部分描述了电路拓扑。第四部分详细描述了使用 MATLAB 进行仿真,第五部分给出了仿真结果。第六部分是结论和结果。
相关论文选登: 1. (JOURNAL1) M. Olariu、A. Arcire,用于呼吸分析目的的富勒烯 C60 的甲烷和氢气传感特性,IAŞI 理工学院公报,第 64 卷(68),第 3 期,页。 107-119,2018,电工部分。活力。电子学 2. Olariu Marius、Arcire Alexandru,基于交叉指型微电极几何形状变化提高介电泳阵列电操作能力,DOI:10.1109/ICEPE.2016.7781298,电子版 ISBN:978-1-5090-6129-7,pg。 37-41,第九届国际电气和电力工程会议暨博览会,EPE 2016 INSPEC 接入号:16525883 3. Baluta, G.,Olariu M.,BLDC 电力驱动系统闭环控制和无传感器控制的数值模拟,2014 年,EPE 2014 - 2014 年国际电气和电力工程会议暨博览会论文集,文章编号 6970047,第 927-932 页,ISBN:978-1-4799-5849-8 接入号:WOS:000353565300173 4. (REVISTA2) Cetiner, S.; Olariu,M.;新奥尔良,卡亚; Aradoaei S, 聚(丙烯腈-共-丙烯酸)-聚吡咯复合材料的热刺激放电电流,2013 年 3 月,Key Engineering Materials 543:154-158,DOI:10.4028/www.scientific.net/KEM.543.154 接入号:WOS:000319023100038 5. Scarlatache, V.-A.、Olariu, M.、Ursache, S.、Ciobanu, RC、Pasquale, Mb,铁磁粉末增强纳米复合聚合物基质的磁损耗和介电损耗,2012 年,文章编号 6463940,第 125-128 页,2012 年,ISBN:978-1-4673-1172-4; 978-1-4673-1173-1,第七届国际电气和电力工程会议和博览会,EPE 2012 接入号:WOS:000324685300026 6.(JOURNAL3)山羊。 A、Coisson A、Fiorillo、Kabos P、Manu OM、Olivetti A、Olariu MA、Pasquale M、Scarlatache VA、聚合物键合氧化铁纳米粒子的微波行为,IEEE TRANSACTIONS ON MAGNETICS 卷:48 期:11 页:3394-3397 DOI:10.1109/TMAG.2012.2200462 出版日期:2012 年 11 月,影响因子 = 1,467
为了应对电动汽车行业目前和未来的增长,发展大规模、可靠和高效的锂离子电池回收行业对于确保嵌入贵重金属的循环性和确保技术的整体可持续性至关重要。正在开发的主要回收程序之一是基于湿法冶金。作为锂离子电池进行此过程之前的预处理步骤,必须将其停用以防止所含电能不受控制地释放。此停用步骤通常通过将电池深度放电至 0.0 V 来完成,而不是通常的 3.0 V 左右的下限。通常,深度放电是通过连接电阻或浸入盐溶液中来完成的。然而,由于放电电流与端电压成比例降低,这个过程可能非常慢,特别是如果要防止相当大的反弹电压。这项工作探讨了在放电速度、有效性和安全性方面更快放电程序的可行性。所提出的程序需要使用可控负载以恒定电流进行深度放电,然后立即施加外部短路。恒定电流放电期间的 C 速率会发生变化以研究其影响。短路施加于 0.0 V 或 1.0 V 的端电压。通过实验评估这两个工艺步骤的安全性。审查的主要安全风险是温度升高和随后的热失控风险,以及由于压力增加和膨胀导致电解质泄漏的风险。在实验工作中,两种类型的大尺寸方形 NMC811 电池从 0% 的 SoC 开始深度放电。实验仅限于单个电池。发现在 0% SoC 的固定电池中,深度放电区域可额外获得 4% 的额外容量。根据温度测量和文献综述,热失控风险评估为低。为了研究压力的上升,测量了所有电池的厚度,并测量了三个样品的原位压力。电解质泄漏风险评估为低。放电程序结束后一周内跟踪回弹电压和电池厚度。短路 30 分钟后,所有电池的回弹电压接近 2.0 V,但需要稍长的短路持续时间才能可靠地达到此阈值。总程序时间比其他放电程序短得多,同时仍然保持安全。
国际电池委员会 (BCI) 根据物理尺寸将电池尺寸分为不同的组,使用英寸和毫米进行测量。使用 BCI 电池尺寸表可以帮助用户找到合适的替代品。要找到合适的替换电池,必须知道旧电池的 BCI 组号,但仅靠这些信息可能还不够。一些作为最佳匹配的电池可能比标准尺寸稍大,这可能会在紧密贴合的隔间中造成问题。下面提供了列出流行 BCI 电池组及其尺寸的图表:27 组电池:子组尺寸指南27 组电池细分为三个子组,按其尺寸(长 x 宽 x 高)分类。每个子组的实际尺寸为:306 x 173 x 225 毫米、318 x 173 x 227 毫米和 298 x 173 x 235 毫米。选择新电池时,请验证实际尺寸以确保兼容性。 31 组电池概述 BCI 将 31 组深循环电池定义为适用于车辆、船舶和远程电源。这些电池可以多次放电和充电。尺寸:13 英寸长、6 13/18 英寸宽和 9 7/16 英寸高。 34 组电池:中型动力源 BCI 34 组电池为中型,功能强大,提供 750-900 CCA、100-145 分钟的储备容量。它们具有 50-75 Ah 范围内的 20 小时容量。重量在 16.8kg 和 23.1kg 之间不等,具体取决于电池类型和内部结构。 35 组电池:两用电源 BCI 35 组电池常用于启动和两用应用,例如汽车、卡车、房车和医疗设备。这些铅酸电池的尺寸范围从 20h 到 125-230 cm3,电气特性取决于设计、预期用途和电池类型。47、48 和 49 组电池 BCI 51 组电池的尺寸为 9.374 x 5.0625 x 8.8125 英寸和 23.8 x 12.9 x 22.3 厘米,适用于大多数汽车的防振应用。这些吸收性玻璃垫密封铅酸电池设计为适合标准电池仓。BCI 65 组电池通常用于汽车、船舶和工业环境。平均容量范围从 70 到 75 Ah/20h,最大放电电流为 750-950 安培,它们适用于启动和深循环应用。这些中型 AGM SLA 电池通常重 20-25 千克,尺寸为 306 x 190 x 192 毫米(12 x 7.5 x 6.6 英寸)。BCI Group 75 电池主要设计用于汽车和轻工业,具有出色的启动能力和双重用途。它们通常用于汽车、卡车和轻型卡车,为内燃机和各种负载供电。Group 78 电池可用作汽车、轻型卡车、船舶和工业环境中的多种启动和通用电池。它们需要高质量和耐用的性能,以频繁提供大电流和快速充电。它们的尺寸为 10.25 x 7.0625 x 7.6875 英寸(26 x 17.9 x 19.6 厘米),可以与其他组尺寸互换使用。同样来自 BCI 的 94R 组电池广泛用于汽车和轻工业应用,常见于乘用车和商用设备。BCI 94R 组电池类型包括 H7、L4 和 LN4,主要用于宝马、奔驰、奥迪等公司生产的车辆。这些电池在低温条件下提供电力,充电迅速,支持各种车载电子设备,并可承受自动启停应用。尺寸范围从 12.4 x 6.9 x 7.5 英寸到 315 x 175 x 190 毫米,重约 3.6 至 25.8 公斤。常见的 BCI 集团电池包括:* GC2 和 GC2H:深循环电池,用于高尔夫球车、船舶应用、离网系统、医疗和安全系统。* 尺寸:(长 x 宽 x 高)GC2 为 10.375 x 7.18 x 10.625 英寸或 264 x 183 x 270 毫米,GC2H 为 11.625 英寸或 295 毫米。其他电池类型包括:* BCI 集团 GC8 和 GC8H:重型深循环电池,用于高尔夫球车、船舶应用、离网系统、医疗和安全系统。* 尺寸:(长 x 宽 x 高)GC8 为 10.375 x 7.18 x 10.625 英寸或 264 x 183 x 277 毫米,GC8H 为 11.625 英寸或 295 毫米。 BCI Group GC12 电池为汽车、离网和轻工业应用提供可靠电力,专为深循环使用和离网发电而设计。这种类型的电池通常用于高尔夫球车和其他需要稳定电源的应用。BCI Group 提供一系列电池,包括 4D、6D 和 8D 电池等重型商用电池,以及 U1 和 U1R 电池等通用电池。这些电池的尺寸因其大小而异。- **BCI Group 4D、6D 和 8D 电池:** - 这些是重型商用电池,用于高需求应用,如离网系统、安全和医疗设备备用装置、电动车、车辆电池和船用马达电池。- 它们具有相似的高度和长度,但宽度不同。例如: - BCI 组 4D 电池:20 3/4 x 7 9/16 x 10 1/2 英寸或 527 x 193 x 266 毫米 - BCI 组 6D 电池:21 5/8 x 8 1/4 x 12 1/4 英寸或 549 x 210 x 311 毫米 - BCI 组 8D 电池:20 3/4 x 11 x 9 7/8 英寸或 527 x 279 x 251 毫米 - **BCI 组 U1 和 U1R 电池:** - 这些是通用电池,用于医疗和安全设备、高尔夫球车、割草机、露营和电动滑板车等应用。 - 它们有以下尺寸: - BCI 电池组尺寸 U1:7 3/4 x 5 3/16 x 7 5/16 英寸或 197 x 132 x 186 毫米 - BCI 电池组尺寸 U1R(U216):6 5/16 x 5 3/16 x 7 1/8 英寸或 160 x 132 x 181 毫米 这些电池专为特定用途而设计,具有不同的容量、重量和尺寸。汽车电池有各种尺寸和规格,有些很轻,有些很重。有些类似于标准 AA 电池,有些则具有独特的形状。12v 电池的尺寸差异很大,范围从 8 3/16 x 6 13/16 x 8 3/4 英寸到 10 1/4 x 6 13/16 x 9 3/8 英寸。这些尺寸特定于汽车电池,与其他电子应用中使用的尺寸不同。船舶、儿童玩具车和户外设备的电池也因其预期用途而具有不同的尺寸。有些电池是可充电的,这是可能的,因为启动车辆只需要初始电流。然后交流发电机接管,为电池充电。可充电电池适合频繁使用,而不可充电电池更适合不频繁使用。制造商还开发了较小版本的电池,例如用于鱼探仪的电池。将 12v 电池与 6v 电池进行比较会发现显著差异。 12v 电池包含六个电池,提供比 6v 电池(100 安培小时)高出两倍的电压和更大的安培小时容量(200-2400 瓦时)。
特斯拉的电池技术享有盛誉,2013 年特斯拉 Model S 被 Motor Trend 评为“年度最佳汽车”。这一成就可以归因于其更长的续航里程、更快的加速和令人眼花缭乱的速度,所有这些都是由其电力电子设备和电池系统实现的。在本文中,我们将深入探讨特斯拉汽车中使用的电池系统的细节。具体来说,我们将重点介绍电池组,并涉及其他重要主题,例如机械或热规格、电气特性和特征、电池模块效率和保护功能。电动汽车 (EV) 电池系统是其主要的能量存储系统,主要由电池组成。设计电动汽车的电池系统需要多个领域的知识,包括电气工程、机械工程、热工程、材料科学等。特斯拉电池组的一个关键特性是其高效率、可靠性和安全性,使其成为高度模块化的设计。每个模块可以串联以产生所需的电压输出。特斯拉 Model S 电池组的电压约为 400 伏。特斯拉电池组的一个显著例子是 Model S P85 中的电池组,其容量为 90 kWh,重量超过 530 公斤。该电池组包含 16 个模块,由 7104 个独立电池组成。中央母线在将每个电池模块连接到接触器方面起着至关重要的作用,接触器为前后电动机供电。由于每个模块约为 5.5 kWh,而 Model S P85 的电池组中有 16 个这样的模块,因此它实际上相当于一个 84kWh 模块。特斯拉在其电池组中使用锂离子电池。每个电池都有不同的尺寸、形状和内部化学性质。所用电池的具体类型取决于所制造的型号;例如,特斯拉的 Model S 和 X 变体使用松下制造的 18650 锂离子电池。这些电池的尺寸是一个关键信息,因为它表明了它们的大小和形状。每个 18650 电芯直径为 18 毫米,高为 65 毫米,其命名法可以洞悉其尺寸和内部结构。电芯以串联和并联连接的方式排列,从而形成一个模块。电池组的设计和所用电芯类型会显著影响汽车的整体性能。特斯拉 Model S 电池组:技术特性详细分析特斯拉的电池组(用于 Model S)由松下与特斯拉合作开发,专为电动汽车 (EV) 应用而设计。该电芯的主要特性如下:| 参数 | 规格 | | --- | --- | | 容量 | 3.4 Ah | | 电芯能量 | 12.4Wh | | 标称电压 | 3.66 V | | 体积能量密度 | 755 Wh/L | | 重量能量密度 | 254Wh/Kg | | 内阻 | 30m Ohm | | 电芯质量 | 49g | | 电芯体积 | 0。0165L | 特斯拉 Model S 电池组由多个称为模块的较小电池组成,每个模块采用 6S 74P 配置。这意味着六个电池串联连接,每个系列都有 74 个电池并联连接。每个模块的额定连续电流为 500A,峰值电流为 750Amps。电池组采用液体冷却来维持其温度并防止过热,过热可能导致热失控和火灾危险。冷却系统使用热交换器管道,该管道将冷却液输送到模块内部。 ### 引线键合技术的优势 特斯拉 Model S 电池组中使用的引线键合技术有几个优点: * 连接过程中不会向电池引入热量。 * 导线充当安全保险丝,在电池发生故障时提高整个系统的安全性。 * 它提高了可制造性。 ### 引线键合技术的缺点 但是,这种技术也有一些缺点: * 由于增加了导线,它增加了电阻。 * 它会在系统中产生热量,从而降低运行效率。 * 电池模块的规格如下:| 参数 | 规格 | | --- | --- | | 标称电压(电池模块) | 22.8V/模块 | | 充电截止电压(电池模块) | 25.2V/模块 | | 放电截止电压(电池模块) | 19.8/模块 | | 最大放电电流(10 秒) | 750 安培 | | 高度 | 3.1 英寸 | | 宽度 | 11.9 英寸 | | 长度 | 26.2 英寸 | | 重量 | 55 磅 | 热管理系统是一项关键的安全功能,它通过去除电池组内部的热量来确保电池组的温度保持在一定阈值内。### 图片参考本文中的一些图片取自 EV Tech Explained,这是一个提供深入解释电动汽车技术的频道。特斯拉电池组的关键在于将各个电池彼此隔离。在弯道处,Kapton 胶带可确保最佳绝缘效果。水乙二醇溶液用作冷却剂,当冷却剂流过电池组时,温度会升高。下图显示了高强度测试后电池模块内不同点的温度波动。蓝线表示冷却剂入口,红线表示出口。图中还显示了最大和最小电池温度。测试最初设置为 20°C,涉及 250 安培充电和放电循环。如图所示,模块之间存在低温偏差。保持相似的温度至关重要,因为它会影响内部电阻和整体电池组特性。冷却剂管的波浪形设计增加了表面积和封装效率。电池组本身作为结构构件,位于汽车底部。它为车辆提供刚性和强度,降低重心并改善平衡性和稳定性。每个凹槽可容纳一个电池模块,纵向构件可加强底盘的抗冲击和侧弯能力。内部构件为模块放置创建网格,同时提高基础强度和物理刚度。如果发生火灾,它们会将模块彼此隔离。下图显示了所有 16 个模块的放置位置。高压母线连接在上方,红点表示正极连接,黑色表示负极连接。母线由厚铜镀锡板制成。电池管理系统 (BMS) 对于安全、监控过充、过放、充电状态、放电状态、温度等至关重要。下图显示了基于德州仪器 bq76PL536A-Q1 3 至 6 串联锂离子电池监控器和二次保护的特斯拉 Model-S BMS。BMS 集成到每个模块中,监控电池寿命、温度和其他因素。特斯拉 Model S 的电池监控系统 (BMS) 通过充电放电循环监控电池,并使用 SPI 与其他串联 BMS 模块进行数据通信。每个模块的 BMS 都充当从属设备,通过隔离屏障与主 BMS 通信,主 BMS 控制主接触器并通过 CAN 总线与 ECU 和充电器通信。使用连接到并联连接板的电线测量电池电压。假设 BMS 图片中每个串联连接的 6 个监控 IC 来自 TI,可以菊花链连接一条通信线路,可能是由博世开发的,该系统的复杂性和工程工作量是显著的,特别是在设计模块和电池组时,它们也用于结构目的,增强了车辆的稳定性和机动性。使用的高质量电池有助于满足对二次使用的需求,由于特斯拉提供的信息在互联网上可以找到,因此很难验证它。通过隔离屏障与控制主接触器的主 BMS 进行通信,并通过 CAN 总线与 ECU 和充电器进行通信。使用连接到并联连接板的电线测量电池电压。假设 BMS 图片中每个串联连接的 6 个监控 IC 来自 TI,可以菊花链连接一条通信线路,可能是由博世开发的,该系统的复杂性和工程工作量是显著的,特别是在设计模块和电池组时,它们也用于结构目的,增强了车辆的稳定性和机动性。使用的高质量电池有助于满足对二次使用的需求,由于特斯拉提供的信息在互联网上可用,因此很难验证它。通过隔离屏障与控制主接触器的主 BMS 进行通信,并通过 CAN 总线与 ECU 和充电器进行通信。使用连接到并联连接板的电线测量电池电压。假设 BMS 图片中每个串联连接的 6 个监控 IC 来自 TI,可以菊花链连接一条通信线路,可能是由博世开发的,该系统的复杂性和工程工作量是显著的,特别是在设计模块和电池组时,它们也用于结构目的,增强了车辆的稳定性和机动性。使用的高质量电池有助于满足对二次使用的需求,由于特斯拉提供的信息在互联网上可用,因此很难验证它。