光伏电池系统 (PVBS) 的最佳尺寸确定是一项关键挑战,因为大量参数会影响其优化。由于实际原型的局限性,有时很难重现某些实验情况。因此,创建了 PVBS 仿真模型,并在软件 TRNSYS(瞬态系统仿真工具)中实现了反倾销机制。随后,使用从实际系统获得的实验数据通过误差度量方法进行验证,其中评估了整个测试期间系统最终累积能量的测量值和模拟值的偏差。模型的准确性主要受固定模拟步骤的影响,因为由于模型的敏感性,能量变化难以察觉,以及某些组件的编程,忽略了光伏板之间的连接、能量效率的变化以及系统组件运行期间的工作电压水平等方面。然而,在测试过程中,测量结果和模拟结果的趋势相似,电池充电/放电能量和发电能量的平均绝对误差值约为 4.00 kWh/天,所有情况下的平均相对误差值均低于 10.00%,太阳能发电能量为 3.07%,电池放电能量为 3.81%,电池充电能量为 8.85%。因此,证明了使用 TRNSYS 模拟实施反倾销机制的并网电池光伏系统模型是令人满意的,可以无限测试和控制大量变量。
金属颗粒是活性材料,可以产生自我释放或其他法拉第反应,尤其是在阴极上。此外,当电极和分离器在组装过程中将电极和分离器压在一起时,它们非常困难,并且众所周知,它们会产生短路,并且颗粒穿过分离器,从而使两个电极可以进行电气接触。这些颗粒会导致电池中的主要短路,导致热跑道(也称为“用火焰排气”(图5)和随后的爆炸或火灾。一个小的短路只会导致自我释放升高,从而影响电池性能。由于放电能量非常低,因此产生的热量很少。
收讫日期:2023 年 12 月 04 日 接受日期:2022 年 12 月 28 日 发表日期:2023 年 1 月 04 日 摘要:车辆到电网 (V2G) 技术是指使用电动汽车 (EV) 作为电网的储能来源,提供多种服务。辅助服务是指连接到电网的电动汽车可以提供的附加服务,例如频率调节和电压控制以及可再生能源 (RE) 开发。有几种不同的充电拓扑可用于 V2G,包括双向充电,其中电动汽车可以具有双重功能(充电和放电能量)和单向充电,它代表只能从电网充电的电动汽车的运行。目前,V2G 最流行的充电拓扑是交流充电和直流快速充电。 关键词:电动汽车 (EV)、可再生能源 (RE)、车辆到电网 (V2G) 引用本文为:A. Alsharif、A. A Ahmed、M. k。 Khaleel, M. A, Altayib,“电动汽车辅助服务和能源管理:简要回顾”,《北非科学出版杂志》(NAJSP),第 1 卷,第 1 期,第 09-12 页,2023 年 1 月至 3 月。
摘要 - 本文重点介绍了自动微电网(AMG)的能源管理问题,其中内部需求可能会超过可再生能源(RESS)和电池储能系统(BESS)提供的内部电源。为了获得不匹配的需求响应和能源供应的平衡,提出了三个级别的分层坐标策略。最高级别负责分销网络运营商(DNO)和AMG之间的能源协调。DNO将从/到在缓慢采样期间具有剩余能量的AMG购买/出售能源。中等水平着重于每个单独的AMG的局部平衡,该平衡优化了与最高水平相同的采样周期的聚合器的BESS的充电/放电能量和调度。在供需不平衡的情况下,根据中等水平的优化结果,底层将做出减少载荷决策,该结果已更新快速降低速率。此外,还采用了两次尺度优化方案来减少由RES运行和弹性负载的随机性引起的双向扰动的影响,并且有效地解决了不同的时间尺度能量计划。仿真结果显示了所提出的方法的有效性。
日本内阁府在2014财年至2018财年的5年期间,在跨部委战略创新促进计划 (SIP) 中组织了一项重大项目“创新燃烧技术”。演讲介绍了汽油燃烧团队与28所大学合作对汽油发动机超稀薄燃烧概念的研究和开发。为了使汽油SI发动机的热效率达到50%,稀薄燃烧操作是通过低温燃烧减少热损失来提高热效率的有效技术之一。单缸SIP原型发动机采用过量空气比超过2.0的超稀薄混合气,以将燃烧温度降至2,000K以下,并减少热损失和NOx排放。然而,由于层流火焰速度降低导致燃烧持续时间延长,以及循环间燃烧波动和/或熄火增加,成为实现超稀薄燃烧发动机的障碍。因此,原型发动机设计为产生25m/s的高强度滚流,并利用滚流塌陷产生的湍流加速燃烧的效果。该发动机的火花点火系统比传统发动机的放电持续时间长10倍,放电能量更高,实现了稳定的循环点火和燃烧。
在低湿度条件下普遍存在,当湿度较高时可能会“消失”,这进一步增加了定位这些问题的难度。请注意,发动机装置的电气隔离部件也可能导致类似问题。放电会对 EFIS 电源造成严重影响,从而导致故障。验证和定位问题可能很困难,但这里有一些基本提示:使用一个简单的欧姆表,一端接地,另一端接长导线。识别任何可能隔离的金属或导电部件,并确保接地导电。使用一个简单的长波接收器(AM 收音机)调到任意但安静的频率来监听发动机运转时的放电(这会引起噼啪声)。在严重的情况下,请考虑将音频输出连接到飞机的对讲系统,以便您可以在飞行中收听。放电涉及短时间内非常大的电流。根据您的接线 – 这可能会导致您的 EFIS 电源出现较大的电压尖峰。直接向信号或控制线放电可能会损坏连接的设备。对于与发动机相关的放电,我们发现在夜间拆下发动机罩运行发动机非常有效 – 天黑时放电非常明显。我们发现一种情况是,放电发生在使用隔离橡胶支架安装的散热器周围 – 在其中一个支架周围快速接地带解决了问题。放电能量通过发动机温度传感器进入仪器。
随着电子元件变得越来越精密,新的 ESD 挑战不断出现,静电放电 (ESD) 对敏感行业构成了越来越大的威胁。ESD 是由绝缘表面上的静电荷积累引起的,当高电场导致气隙介电击穿时,静电荷会突然放电。具有不同电子亲和力的材料的接触和分离会通过摩擦电效应引起电荷转移,摩擦电效应是主要的 ESD 产生因素。低湿度会通过阻止电荷消散而加剧 ESD 风险。ESD 会永久损坏敏感电子设备,例如电压阈值可能只有 100 V 的集成电路。除了电子设备之外,ESD 还会通过引发火灾和爆炸威胁易燃行业,通过设备干扰威胁医疗保健行业,通过破坏航空电子设备威胁航空航天系统。防静电服装和防护设备对于控制敏感环境中的 ESD 至关重要。理想的材料可以快速消散电荷,同时限制放电能量。但是,优化快速衰减和减少放电火花需要在传导和绝缘之间进行权衡。影响防静电性能的关键因素包括纤维成分、导电元件的网格间距、织物结构以及导电元件的集成方式。传统的标准化测试(如电阻率)对于现代非均质织物和实际条件有局限性。特定于应用的评估是理想的选择。将技术创新转化为扩展的测试和实施计划对于提高全球采用率至关重要。通过协调努力,这些织物有可能在技术进步不断加快的情况下减轻不断升级的 ESD 风险。本研究中的系统文献综述侧重于构造防静电纺织品时要考虑的结构、技术要素和测试方法。